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Abstract—This paper presents the development and evaluation
of a Fuzzy Decision Support System for irrigation management
to promote sustainable water use in precision agriculture. A
Mamdani-type fuzzy logic model was designed to optimize
irrigation scheduling for vineyards in the Val d’Adige region
of Trentino, Italy. The system integrates expert knowledge
with real-time data from tensiometers and weather stations
to generate adaptive, site-specific recommendations. Bayesian
optimization was used to fine-tune the membership functions of
fuzzy variables, enhancing system performance. Field evaluations
conducted in 2023 across multiple sectors assessed total water
use, average soil moisture, and days exceeding critical moisture
thresholds. Results show that the system reduced total water
consumption by over 52% compared to traditional methods while
maintaining soil moisture within optimal levels. These findings
underscore the potential of combining fuzzy logic and IoT-based
sensing to support scalable, adaptive irrigation strategies across
various crops and regions.

Index Terms—Fuzzy Logic, Irrigation Management, Precision
Agriculture, Recommendation System, Soil Moisture Monitoring.

I. INTRODUCTION

The increasing demand for sustainable agriculture under-
scores the urgent need for innovative precision farming meth-
ods that optimize resources, enhance productivity, and manage
soil moisture effectively. Modern agriculture faces challenges
such as climate change, water scarcity, and the need to feed
a growing population with minimal environmental impact.
Efficient water management, especially through advanced ir-
rigation strategies, is crucial to addressing these challenges.

In areas characterized by seasonal drought or unpredictable
precipitation, such as Trentino vineyards in Northern Italy
— the focus of this study — precision irrigation is the key
to balancing water conservation with high-value crop needs.
Grapevines, particularly, are highly sensitive to soil moisture
levels and require an optimal water balance to maintain
yield and quality. Therefore, using advanced tools capable of
adapting irrigation to dynamic environmental and crop-specific
conditions is important.

Recent Internet of Things (IoT) advances have revolution-
ized agricultural monitoring, enabling high-resolution, real-
time data collection through devices like tensiometers and
weather stations [1]. These support informed irrigation de-
cisions by replacing traditional heuristics with data-driven
insights. However, converting raw sensor data into actionable
plans is challenging due to environmental variability and
system complexity.

Traditional irrigation scheduling methods, often based on
fixed thresholds or heuristic rules, frequently fail to capture
the mutual interactions of all factors involved, resulting in
inefficient water use and suboptimal outcomes for crop health
and yield. This limitation has sparked a growing interest in
advanced computational solutions [2].

One such approach employs Mamdani Fuzzy-based Deci-
sion Support Systems (hereafter referred to as Fuzzy DSS),
which are particularly suitable for agricultural applications as
they emulate human reasoning and handle the vagueness and
imprecision inherent in agro-ecosystems [3]. These systems
process input data through linguistic variables (e.g., "temper-
ature IS low”) and logical rules (e.g., "IF antecedent THEN
consequent”) to enable flexible and interpretable decision-
making (e.g., "IF temperature is low THEN heating is high”).
They are especially effective at integrating expert knowledge
into intuitive rule sets, producing practical and comprehensible
outputs. This adaptability makes them ideal for applications
like irrigation management, where uncertain factors (e.g.,
fluctuating weather, variable crop demands, soil heterogeneity)
must be simultaneously accounted for.

This study focuses on designing, developing, and validating
a Fuzzy DSS tailored for vineyard irrigation within an agricul-
tural consortium located in the Rovere della Luna municipality
(hereafter RDL), Val d’Adige region of Trentino, Italy. The
provided system integrates historical and real-time data from
tensiometer networks and weather patterns to generate effec-
tive irrigation recommendations, refined by expert knowledge
to meet the area’s specific needs. The proposed approach pro-
vides a practical tool for agronomists and irrigation managers
to implement sustainable irrigation solutions. Furthermore, this
work contributes to the broader field of smart agriculture
by showcasing the potential of integrating fuzzy logic with
modern IoT infrastructure.

The paper is structured as follows: Sec. II reviews related
works, while Sec. III describes the technological framework
and the rationale behind the system. Next, Sec. IV describes
the system details for the specific case study, including vari-
ables, rule design, and optimization strategies. Finally, Sec. V
presents the system assessment and an analysis of the main
results, followed by insights and future directions in Sec. VI.

II. RELATED WORKS

Fuzzy logic has emerged as a robust methodology for
handling uncertainty and imprecision in irrigation systems.



Several studies have demonstrated its utility in improving
water efficiency, enabling intelligent and autonomous control.
For example, the authors of [4] proposed a water-saving
irrigation system based on fuzzy logic, which shows a sig-
nificant improvement in water utilization efficiency. Similarly,
the authors in [5] designed a fuzzy system for automatic
agricultural irrigation, integrating real-time data to achieve
autonomous control. More recently, in [6], the computational
efficiency of fuzzy logic controllers in agriculture has been
highlighted, addressing the limits of traditional methods.

The integration of fuzzy logic with IoT technologies has
advanced smart irrigation. In [3], IoT-enabled fuzzy systems
were implemented to enable real-time adaptation to dynamic
field conditions. Zoning-based approaches, such as that de-
scribed in [7], introduced fuzzy control for water and energy
savings, offering targeted irrigation in distinct field areas.

In parallel, traditional DSSs have been augmented by fuzzy
logic to provide actionable insights. The authors of [8] devel-
oped a DSS for agricultural irrigation management, focusing
on user-friendly interfaces and data visualization. Meanwhile,
in [9], the authors explored the application of machine learning
techniques within DSS, demonstrating enhanced predictive
accuracy and system robustness. Along the same line, [10]
presented a comprehensive survey on smart irrigation DSS,
emphasizing the integration of machine learning and fuzzy in-
ference for automated decisions. This combination has proven
to be effective in managing complex irrigation scenarios with
varying soil, weather, and crop conditions.

III. USE CASE DESCRIPTION AND TECHNOLOGY

Irrigation decision-making in RDL involves multiple stake-
holders, including agronomists, vineyard managers, and tech-
nical staff, who collaborate to design irrigation schedules
based on various factors. The area of RDL is divided into
water sectors, each with distinct requirements influenced by
geography, soil composition, and plant type. The number of
rows per sector is variable, reflecting the heterogeneity of the
terrain. This segmentation also allows custom itrigation strate-
gies for each sector. In this consortium, irrigation planning
typically involves determining the number of cycles per sector,
the duration of each cycle, and the specific water volume to be
delivered. These schedules are designed in advance to meet the
water needs of the vineyards while minimizing resource waste.
Flexibility in irrigation plans allows for real-time adjustments
or interruptions of cycles when field data reveal unexpected
soil moisture patterns. In such cases, sprinkler systems can be
remotely controlled to stop or modify irrigation immediately.

To support this process, RDL employs a network of IoT
sensor deployment consisting of 16 geo-referenced tensiome-
ters strategically placed within the vineyards to accurately
monitor soil moisture. Installed in pairs at depths of 30 and 60
centimeters, each pair corresponds to a specific row, chosen
as representative of a water sector. The depths are chosen to
capture the moisture dynamics within the root zones critical to
grapevine growth. Sensors record soil moisture levels in mil-
libars (mbars) at 15-minute intervals, generating four readings

per hour per sensor. This high temporal resolution provides
detailed insights on daily soil moisture fluctuations.

Sensor data is transmitted to a cloud-based IoT platform,
where it undergoes pre-processing to ensure consistency and
reliability. Temporal alignment synchronizes readings across
sensors, missing data points are linearly interpolated, and
anomalies, such as outliers from sensor malfunctions or en-
vironmental interference, are corrected using domain-specific
heuristics. The processed data is then stored in a PostgreSQL
database. Each pair of tensiometers is associated with a
sprinkler system assigned to irrigate the corresponding water
sector, directly connecting sensor data to irrigation control.

Additionally, historical weather data from nearby meteoro-
logical stations is integrated into the system. This provides
context for understanding long-term climate trends and their
impact on vineyard water needs. A web-based weather fore-
casting service delivers localized meteorological predictions
via APIs. By integrating real-time and forecasted data, this
technological stack enables precise and adaptive irrigation
strategies that align with resource efficiency and sustainability
goals in the target area.

IV. DESIGN AND OPTIMIZATION OF THE Fuzzy DSS

The proposed Fuzzy DSS is designed to improve water
management for specific agricultural consortia equipped with
sensor and actuation capabilities, as described in Sec. III. More
specifically, the primary goal is to provide daily irrigation
recommendations, focusing on the duration of each watering
turn, to minimize water consumption while maintaining soil
moisture within optimal levels. The following subsections
elaborate on its design and optimization.

A. Fuzzy DSS Design
The system is based on four input variables:

e Last Avg Tensiometer: previous day’s average tensiometer
reading (expressed in millibars), which reflects the most
recent soil moisture levels:

T, = Zi\gl Taz
Na
where T} ; is the tensiometer reading on day d at moment
t, and Ny is the total number of readings during the day.
o Predicted Avg Tensiometer: predicted tensiometer reading
for the day of interest (expressed in millibars), calculated
through a machine learning model trained on historical
data from multiple tensiometers:

Tyt = f(Fy, Fy, ..., Fy)

where f is the machine learning model and F} is the j-
th factor influencing the prediction. The prediction relies
on careful selection and engineering of features that
effectively capture the soil moisture dynamics. Although
choosing a model is crucial to ensure prediction accuracy,
it is also important to consider the computational cost,
scalability, and the ability to generalize across vary-
ing environmental conditions. However, without loss of



generality, the deep learning model presented in [1],
specifically an LSTM (Long Short-Term Memory), will
be adopted in this study, as it has been shown to excel
in capturing complex, non-linear dependencies in soil
moisture prediction tasks.

e Predicted Rain Amount: predicted cumulated rain amount
over the next three days (expressed in millimeters):

3
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where Rg4, is the predicted rain amount for day d + n.
e Predicted Max Temperature: maximum predicted temper-
ature over the next three days (expressed in Celsius):

Fimax

d,3 = ma'X{TmaX,d+17 Tmax,d-‘rZa Tmax,d+3}

where Tiax,d+n 1S the predicted maximum temperature
for day d + n.

Afterward, a fuzzification process is applied to all variables,
as illustrated in Fig. 1. Specifically, each input variable is
described using three linguistic terms (Low, Medium, and
High), which qualitatively represent its possible states. The
terms Low and High are modeled with trapezoidal membership
functions, whereas the term Medium uses a triangular one.

The output variable, Decision, is instead defined by four
linguistic terms (Not Recommended, Half Turn, Single Turn,
and Double Turn), which specify the recommended duration of
the irrigation turn relative to the standard duration. Similarly to
the input variables, the output linguistic terms at the extremes
are represented with trapezoidal membership functions, while
the intermediate terms use triangular membership functions.

The DSS’s fuzzy rule base was developed through a collabo-
rative effort involving engineers, agronomists, water managers,
and other key stakeholders. The outcome of this process is a
set of 21 fuzzy rules that consider a wide range of scenarios,
as shown in Table I. These rules incorporate critical variables,
capturing specific combinations of antecedent conditions and
aligning them with the most suitable consequent actions.
Although the variables define a complete input space of
3* = 81 possible combinations, the rules were designed to
compactly cover this space by generalizing the inputs that do
not influence the output. In cases where multiple rules are
equally activated, the system applies standard fuzzy inference
mechanisms based on a weighted average of consequents.

The DSS employs a min-max inference method, where the
minimum operator evaluates rule activation and the maximum
operator aggregates the outputs of all active rules. A control
surface analysis was also performed to examine the relation-
ship between the output and tensiometer inputs, with other
variables kept constant. This helped to visually validate trends
against expert expectations and identify potential inconsisten-
cies or overlapping rule effects. While this validation was
conducted thoroughly, the corresponding results and plots were
omitted for the sake of space.
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Fig. 1. Fuzzy linguistic variables of the Fuzzy DSS (the first four represent
inputs, while the last represents the output).

TABLE I
Fuzzy RULE BASE
Rule Antecedent . C .
Last Tens Pred Tens Pred Rain  Pred Temp B

1 High High Low - Double Turn
2 High High Medium - Single Turn
3 High High High - Not Recommended
4 High Medium Low Low Not Recommended
5 High Medium Low Medium Not Recommended
6 High Medium Low High Single Turn
7 High Medium Medium Low Not Recommended
8 High Medium Medium Medium Not Recommended
9 High Medium Medium High Half Turn
10 High Medium High - Not Recommended
11 High Low - - Not Recommended
12 Medium High Low - Single Turn
13 Medium High Medium Low Half Turn
14 Medium High Medium Medium Single Turn
15 Medium High Medium High Single Turn
16 Medium High High - Not Recommended
17 Medium Medium - - Not Recommended
18 Medium Low - - Not Recommended
19 Low High - - Double Turn
20 Low Medium - - Not Recommended
21 Low Low - - Not Recommended




After defuzzification using the centroid method, the goal
is to provide a recommendation that is as easily interpretable
as possible. To this end, the defuzzified output was converted
back to the fuzzy term with the highest membership degree.
This step ensures that the final output remains intuitive and
straightforward, allowing the recommendations to be trans-
lated into practical actions without ambiguity.

B. Fuzzy DSS Optimization

A structured online questionnaire was distributed to the
consortium experts to validate the Fuzzy DSS. This included
targeted questions on sensor types used, decision-making
processes employed, and general domain knowledge. Experts
were also asked to provide irrigation recommendations based
on scenarios presented to them through sensor data and
weather forecasts. The suggestions were then used to cali-
brate the DSS through Bayesian optimization, which refines
the parameters of the membership functions. The algorithm
employs a probabilistic model to guide the search for optimal
parameters by minimizing an error function E(p), defined as:

N
Em) = 3 - wp) — 3%, m

where y;(p) is the current output of the DSS for the i-th
input, g, is the corresponding expert’s recommendation, and
N is the number of data points used for evaluation.

The dependency of (1) on p, which represents the parameter
space, is noteworthy. This vector encodes the breakpoints of
the membership functions for each linguistic term: triangular
functions use three parameters (left base, peak, right base),
and trapezoidal ones use four (left base, left shoulder, right
shoulder, right base). Thus, p = [p1,p2, ..., prm], Where each
p; lies within a bounded interval [p?““,p?‘ax], based on the
physical or observed domain of the corresponding variable.

The optimization was limited to discrete integer values
within these bounds to maintain tractability and avoid overfit-
ting. The algorithm searches for the optimal set p* that mini-
mizes the error function and represents the ideal configuration.
In other words, the system better aligns with empirical data
and expert insights. The results are specific to the structure
and variables of the proposed DSS and cannot be generalized
to other fuzzy systems.

V. ANALYSIS AND RESULTS

For the scope of this study, a portion of the data available
in the IoT platform described in Sec. III was used. More in
detail, the time-frame from May 1, 2023, to August 31, 2023,
was selected as it aligns with the critical irrigation phase of
the growing season when soil moisture management directly
influences vine health, yield, and grape quality. Soil moisture
readings during this period range from approximately 15 to
650 mbar, a broad range reflecting varying field conditions.
This range is particularly relevant as typical irrigation thresh-
olds for grapevines fall between 200 mbar (the lower wet

limit) and 400 mbar (the upper dry limit), providing a basis for
evaluating irrigation effectiveness [1]. Lastly, meteorological
data were managed using the OpenMeteo API.

The implementation was carried out on a local machine
using Python version 3.11. Scikit-Fuzzy was used for the fuzzy
logic modeling block, while Scikit-Optimize was adopted for
the optimization algorithm.

To evaluate the system’s performance, the actual irrigation
decisions made by experts were compared with those gener-
ated by the DSS under an iteratively applied configuration of
1-day recommendation. At each iteration, the DSS was applied
to provide updated irrigation suggestions, and the correspond-
ing tensiometer was subsequently updated. The comparison is
made for five sectors, representative of the field, by analyzing
the tensiometers and sprinklers involved. Predictive models
were developed to simulate tensiometer behavior and were
individually trained using their own historical data. In contrast,
the DSS uses data from all tensiometers on the farm to
generate an adaptable suggestion and a fair comparative value.
Key metrics included the total volume of water use, the
average tensiometer value, and the number of days during
which soil moisture exceeded the critical dry threshold.

It is important to note that the DSS provides a generic
numerical output designed to be adaptable to various setups,
ensuring scalability across different configurations of consor-
tia. Specifically, for RDL, the output directly relates to the
number of irrigation cycles and the total water volume applied
by all sprinklers in a sector. For example, an output value of
2 corresponds to a standard cycle, representing the application
of 650 liters of water for each sector row. Therefore, the output
was discretized as needed to provide a more realistic and
practical operational context. In general, the total water volume
applied by all sprinklers in a sector, V;, can be calculated as:

N
Vi=> (T;- D; - Qy), )
i=1
where NN is the total number of sprinklers in the sector, 7; is
the number of irrigation cycles for the i-th sprinkler in the
sector, D); is the duration of each irrigation cycle for the i-th
sprinkler, and @); is the water flow for the ¢-th sprinkler.

Bayesian optimization significantly improved the perfor-
mance of the irrigation system, reducing the mean squared
error (MSE) from 0.71 to 0.39 after 100 iterations, a 45%
decrease. This demonstrates the optimization’s effectiveness
in calibrating the system, leading to more accurate irrigation
recommendations against the validation dataset. Near-optimal
performance was reached within just 25 iterations, highlighting
the algorithm’s capacity to quickly identify effective con-
figurations while minimizing computational cost. Moreover,
Table II details the adjustments to the fuzzy variables, showing
them before and after optimization. Although the specific peak
values were adjusted, it is important to note that the universes
of discourse for all variables remained unchanged, maintaining
the same domain for each fuzzy variable.
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Fig. 2. Comparison of actual and DSS-simulated irrigation schedules for a specific water sector in RDL during 2023. The upper graph shows the real
tensiometer readings and irrigation events, while the lower graph displays the simulated trend based on DSS recommendations.

An example of the final results for a specific sector is
presented visually in Fig. 2. The upper graph displays the
actual trend of the reference tensiometer at a depth of 30 cm,
along with the corresponding real irrigation events. The lower
graph shows the simulated trend of the same tensiometer using
the irrigation inputs provided by the recommendation system.
Both graphs include the actual precipitation recorded for that
geographical area. Irrigation and precipitation are normalized
on the same scale. In the actual scenario, irrigation starts
relatively late, around June 20, and is managed on a case-by-
case basis to bring the tensiometer values from above the upper
limit to below the lower limit. These irrigation events tend to
be more concentrated than the recommendations provided by
the DSS. The water recommended by the DSS appears to be
more evenly distributed over time. However, the total water
volume applied over the entire period is similar between the
two approaches. The actual irrigation events frequently occur
on the same days as rainfall, suggesting that the traditional
approach does not systematically consider precipitation when
scheduling irrigation. This overlap may lead to unneces-
sary water applications and reduced irrigation efficiency. The
tensiometer trend under the DSS recommendations appears
more consistent, with soil moisture frequently staying within
the defined thresholds. Despite these differences, the average
tensiometer values remain comparable between methods.

Table III summarizes the results corresponding to the in-
dividual rows within each sector. To obtain the total water
volume applied to the entire sector, this value has to be
multiplied by the number of rows of the sector. However,
this is not the focus of the present study. The results have

TABLE 11
FuzzYy VARIABLES BEFORE AND AFTER OPTIMIZATION

Membership Function Peaks

Fuzzy Variable

Before After
Last Avg Tensiometer {200, 350, 500 {136, 300, 545}
Predicted Avg Tensiometer {200, 350, 500 {0, 300, 711}
Predicted Rain Amount {0, 10, 20} {3, 15, 40}
Predicted Max Temperature {15, 25, 35} {18, 20, 50}

revealed a clear distinction between actual irrigation practices,
the standard DSS recommendations, and the optimized DSS
(DSSgpt). Overall, the application of the DSS methods demon-
strates a significant reduction in water use while maintaining
soil moisture levels within desirable thresholds.

The total water volume applied in the real scenario (52’501
liters) was significantly higher than the amounts recommended
by both the DSS (277950 liters) and the DSS,p (25°025 liters)
strategies. This trend highlights the efficiency of the DSS
approaches in saving water resources without compromising
the primary objective of maintaining soil moisture within
target ranges. The reduction in water usage was particularly
pronounced in sectors with high initial irrigation demand.

Beyond water savings, the DSS strategies also reduced the
number of critical days. This suggests that both methods ef-
fectively minimized instances where soil moisture fell outside
the acceptable range. This improvement is crucial to reducing
crop stress and promoting healthier growth patterns.

Despite these substantial differences in water usage and
critical days, the average tensiometer values remained com-
parable between the actual and DSS scenarios. This similarity



TABLE III
COMPARISON OF IRRIGATION SECTOR PERFORMANCES FOR RDL.

Water Volume per Row (L)

Critical Days Avg Tensiometer (mBars) |

Sector  —pal DSS  DSS,;  Real DSS  DSS,;  Real  DSS _ DSS,y
1 828 325 325 3 I 1 110 196 196
2 479 4550 17300 9 5 3 174 184 184
3 7486 5200 57200 29 10 9 245 254 253
1 10931 10075 9750 24 24 33 201 266 270
5 237757 7800 8450 29 20 I5 239 27 269
Total 52501 27950 25025 114 60 61 r059 U172 U112

indicates that DSS methods achieve efficient water distribution
without sacrificing the overall effectiveness of irrigation in
maintaining soil moisture. Furthermore, the optimized DSS
strategy consistently brought the tensiometer values closer
to the recommended thresholds, suggesting a more precise
alignment with agronomic targets.

VI. CONCLUSIONS

The described results reveal significant potential for opti-
mizing irrigation practices and reducing water usage across
various consortia. The DSS achieved an average reduction in
water volume of approximately 47% for a sector in RDL, with
the optimized variant DSS,; achieving an even greater reduc-
tion of 52%. These percentages reflect the system’s ability
to manage water resources more efficiently than traditional
methods, ensuring soil moisture levels remain within desirable
thresholds while minimizing irrigation inputs. In addition to
water savings, both DSS methods successfully reduced the
number of critical days, highlighting the system’s capacity to
maintain consistent soil moisture conditions, which is essential
for crop health.

While these results are promising, some limitations and
areas for future improvement need to be addressed. First,
simulating DSS using larger temporal windows could provide
a broader perspective on long-term irrigation needs. However,
it is important to note that incorporating machine learning
models for the tensiometer data could significantly impact
the results. Larger time-frames may introduce variability that
could reduce the accuracy of the DSS evaluation. Future
work should also assess the system using additional key
performance indicators, such as irrigation timing precision
(e.g., avoiding overlap with rainfall), proxies for crop yield,
and energy consumption.

Another potential area for expansion is the applicability
of the DSS to other agricultural consortia or setups. Testing
the system across different environmental conditions and crop
types would provide valuable insights into its adaptability. This
would help determine whether the DSS can be generalized to
various contexts or if adjustments are needed to tailor it to
specific needs. In addition, expanding the collection of expert
feedback is crucial for enhancing the system’s architecture.
The DSS can be further refined to address practical challenges
and incorporate local knowledge by gathering more input from

agronomists and other stakeholders. Moreover, integrating a
feedback platform directly into the system would facilitate
real-time corrections and continuous improvement, creating a
dynamic and evolving tool for irrigation management.

Finally, evaluating potential cost savings or return on invest-
ment, along with exploring alternative optimization algorithms
and plant-specific variables (e.g., crop type and stress levels),
could further enhance the impact of the DSS.
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