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Abstract—This paper provides valuable insights into the ap-
plication of spatial interpolation techniques in smart agriculture
and highlights the potential for further improvements through
the integration of advanced geostatistical models. Specifically,
it evaluates and compares two spatial interpolation techniques,
Inverse Distance Weighting and Ordinary Kriging, for estimating
soil moisture in apple orchards located in the Val di Non region
of Trentino, Italy. Data were gathered from 18 tensiometer
sensors deployed across the apple orchards, providing continuous
soil moisture measurements over a specified time frame in
2023. The accuracy of both interpolation methods was assessed
using root mean square error as the primary evaluation metric,
with various validation methods employed to ensure robustness.
Additionally, statistical analyses were conducted to determine the
significance of differences in performance between the methods.
The results indicate that Inverse Distance Weighting, despite its
computational efficiency, slightly outperforms Ordinary Kriging
in terms of accuracy, with statistically significant lower error
values, making it a preferable choice for real-time soil moisture
mapping and precision irrigation management in the region.

Index Terms—Smart Agriculture, Soil moisture mapping,
Irrigation efficiency, Geostatistics, Inverse Distance Weighting,
Ordinary Kriging.

I. INTRODUCTION

The increasing global emphasis on sustainable agricultural
practices requires advanced precision farming methods to
optimize resource use, improve crop yields, and preserve soil
health. Soil moisture is one of the most critical components of
the agricultural ecosystem, as it directly impacts plant growth,
irrigation efficiency, and overall farm productivity [1].
Efficient monitoring and management of soil moisture are es-
sential for determining optimal irrigation schedules, reducing
water waste, and promoting plant health, especially in high-
value crops. One of the emerging needs in precision agriculture
is the ability to collect fine-grained, real-time data from the
field using cost-effective but reliable Internet of Things (IoT)
sensors [2]. These sensors can monitor a wide range of
environmental variables, including soil moisture, temperature,
and humidity, providing farmers with detailed insights into
their fields’ conditions. By deploying a dense network of such
IoT devices across agricultural fields, farmers can achieve
a more precise and localized understanding of soil moisture
dynamics [3]. The affordability and reliability of modern IoT
sensors allow for widespread deployment, making it feasible
to support advanced analytics and decision-making [4].
However, obtaining accurate soil moisture data across large
agricultural areas remains a challenge since moisture measure-

ments are typically gathered from discrete points. To address
this, spatial interpolation techniques are often employed to
estimate data at unsampled locations, allowing for the creation
of comprehensive distribution maps over extensive areas [5].
This paper specifically focuses on comparing two well-
established spatial interpolation methods, namely Inverse Dis-
tance Weighting (IDW) and Ordinary Kriging (OK), for es-
timating soil moisture levels in apple orchards located in the
Val di Non region of Trentino, Italy (see Fig. 1).

Fig. 1. Geography of the Study Area

The data were gathered from an IoT network of tensiometer
sensors strategically deployed across the fields to monitor
soil moisture variations. These battery-powered devices
provided real-time data essential for understanding water
availability in apple orchards, which are highly sensitive
to fluctuations in soil moisture [6]. Indeed, accurate soil
moisture estimation is of paramount importance in precision
agriculture as it helps farmers implement optimal irrigation
strategies, preventing both water shortages and excesses,
which can have detrimental effects on crop yield and quality



[7]. Notably, recent comparative studies related to soil
moisture interpolation were mainly carried out on regions in
China and have shown that simpler methods can sometimes
outperform more sophisticated geostatistical approaches [8].
The findings from this work are expected to provide valuable
insights to farmers, agronomists, and agricultural managers in
the Trentino region, enabling them to make informed decisions
regarding water management and irrigation practices. By
identifying the most effective interpolation technique, this
research aims to improve the efficiency of water usage in
apple orchards, contributing to more sustainable agricultural
practices. Additionally, the study serves as an important
case in the ongoing effort to integrate data analysis and
geostatistical methods into routinary smart farming initiatives.

The remainder of this paper is organized as follows: Sec. II
details the data collection process, including the deployment
of tensiometers and the pre-processing steps taken to ensure
data quality. Sec. III introduces the methodology, explaining
the theoretical basis of the interpolation techniques and the
validation methods used to compare their performance. In
Sec. IV, the results of the analysis are presented, highlighting
the comparative performance of the interpolation techniques
based on RMSE and other statistical metrics. Finally, Sec. V
concludes the study, summarizing the key takeaways and
suggesting directions for future research in soil moisture
interpolation and smart farming technologies.

II. DATA COLLECTION AND PREPARATION

The sensor deployment took place in the municipality of
Tres (Val di Non, Trentino, Italy), where 18 tensiometer
sensors were strategically positioned and geo-referenced
within apple orchards to monitor soil moisture, as shown in
Fig. 1. These sensors, installed at a depth of 30 centimeters,
recorded soil moisture levels in millibars (mbar) at 15-minute
intervals, generating approximately four readings per hour.
The data collection campaign spanned from January 1, 2023,
to December 31, 2023. For the purposes of this study, the
period from July 15 to July 31, 2023, was selected as optimal
because all 18 sensors consistently delivered accurate and
continuous measurements during this time. Soil moisture
values during this period ranged from approximately 15 mbar
to 650 mbar, a significant range given that typical irrigation
thresholds for crops fall between 200 mbar (lower, wet limit)
and 400 mbar (upper, dry limit).

All data sampled and transmitted by the tensiometers
to a cloud-based IoT platform were subjected to temporal
alignment and aggregation to ensure consistency, as each
tensiometer recorded its readings using local timestamps. The
alignment process ensured that each tensiometer produced a
measurement at the top of every hour, achieved by averaging
the multiple readings collected within each hour to derive a
representative soil moisture value. To address missing data
points, linear interpolation was applied. Specifically, if a
sensor recorded values at two specific moments but lacked

data for an intermediate time, the missing value was estimated
as the average of the two known values. This imputation
technique was implemented after temporal alignment and
aggregation, filling any gaps in the hourly data for each
sensor. This comprehensive preprocessing approach ensured
the dataset was continuous, consistent, and suitable for
accurate soil moisture analysis and spatial interpolation.

Following preprocessing, the selected timeframe yielded
408 observations per sensor (17 days × 24 hours), creating
a robust dataset for further analysis. To provide an overview
of the data following preprocessing, Fig. 2 presents the time
series of daily average values from four selected tensiometers.

Fig. 2. Time series of daily average soil moisture values from a sample of
four tensiometers deployed in the study area.

As observed, the tensiometers’ readings exhibit significant
variation throughout the period. This is mainly attributed to
differing irrigation schedules across the consortium’s areas
and the soil’s non-linear properties, which influence its water
absorption capacity. For the sake of completeness, Table I
presents descriptive statistics for the 18 time series of ten-
siometers values analyzed in the study, ordered by their
average values over the period considered.

TABLE I
DESCRIPTIVE STATISTICS FOR SENSOR DATA

ID mean median min max std
1 46.41 45.00 28.00 75.75 9.33
2 62.16 56.00 26.33 178.25 23.70
3 63.78 46.00 24.00 242.00 46.61
4 77.49 53.00 22.00 251.00 56.45
5 98.60 83.00 14.50 261.50 56.54
6 105.87 98.00 29.00 250.00 52.65
7 116.13 73.00 26.50 482.67 102.25
8 116.96 88.00 50.00 371.00 71.09
9 117.62 67.88 27.00 464.00 110.73

10 124.41 111.00 25.00 352.75 71.85
11 125.42 85.00 24.25 388.00 103.03
12 126.28 58.25 25.67 530.67 133.48
13 147.26 83.00 33.50 541.00 146.07
14 185.54 123.50 30.00 562.25 148.75
15 207.32 219.12 48.00 361.00 81.24
16 292.41 306.00 29.75 577.25 193.92
17 293.63 384.00 23.50 448.00 143.49
18 345.04 390.12 58.50 651.00 177.69



III. METHODOLOGY

This section describes the details of the interpolation meth-
ods used for the analysis, as well as the validation tools
employed to compare their results on the dataset discussed
in the previous section.

A. Interpolation methods

Spatial interpolation techniques are essential in precision
agriculture for estimating values at unsampled (i.e., unknown)
locations by leveraging existing observations. In essence, these
methods transform discrete measurements into continuous
surface maps, enabling a comprehensive understanding of key
variables such as soil moisture. By applying interpolation to
soil moisture data, farmers and agricultural managers gain a
more complete view of moisture distribution across their fields.
This supports informed decision-making and contributes to
more sustainable, water-conserving agricultural practices [9].
A spatial interpolation problem involves estimating the
value of a variable at an unknown location y based on
known values at N points xi. Formally, given a set
of known points x1, x2, ..., xN , with corresponding values
f(x1), f(x2), ..., f(xN ), the objective is to find an interpola-
tion function f̂(y) that approximates the value of the variable
at the unknown point y. This function depends on the values
at the known points f(xi), typically using a model.
Various techniques exist in the literature while, for this study,
two approaches were considered: Inverse Distance Weighting
(IDW) and Ordinary Kriging (OK). Both methods are widely
used in precision agriculture due to their balance of simplicity
and computational efficiency [10]. In brief, IDW is a deter-
ministic method that estimates unknown values by assigning
weights to nearby measured points based on their distance,
with closer points having more influence on the prediction.
On the other hand, OK is a more advanced geostatistical
technique that considers both the distance between data points
and their spatial autocorrelation. By modeling the spatial
relationships in the data, it can produce more refined and
potentially more accurate predictions. More in detail, IDW
interpolation equation is given by the function f̂IDW (y) as:

f̂IDW (y) =

∑N
i=1

f(xi)
d(y,xi)p∑N

i=1
1

d(y,xi)p

(1)

where d(y, xi) is the distance between point y and point xi,
and p is the power parameter that controls the weights of the
distances.

IDW is a popular choice in the literature due to its
straightforward implementation and its ability to generate
smooth, continuous surface maps. Its simplicity makes it
particularly attractive for applications in precision agriculture
where timely and computationally efficient methods are
required. However, the performance of IDW can be highly
sensitive to certain factors, particularly the choice of the power
parameter p and the spatial distribution of the input data. In
this study, the parameter was set to p = 2, implementing

a quadratic weighting scheme that gives significantly more
influence to nearby points, as commonly recommended in the
literature [11].

The other method considered in the study is Ordinary
Kriging (OK), which is the most commonly used version of
the Kriging variants. With respect to the previous method, it
is slightly more sophisticated, as it assumes that the value of a
variable at a given location is a combination of a deterministic
trend and a spatially correlated random component. This
random component is captured through spatial correlation,
which is modeled by the variogram. The variogram is a key
function in Kriging that describes how the variance between
pairs of observations changes with distance [5]. The variogram
for a distance h is defined in terms of expected value as:

γ(h) =
1

2
E
[
(f(xi)− f(xj))

2
]

(2)

This definition expresses how much the values differ as the
distance h between the points increases, with smaller differ-
ences indicating stronger spatial correlation. Then, the general
interpolation equation for Ordinary Kriging is given by the
function f̂OK(y) as:

f̂OK(y) =

N∑
i=1

λif(xi) (3)

where λi are the Kriging weights assigned to the known
points xi; this parameters are determined by solving a system
of linear equations based on the variogram.

The process to apply Ordinary Kriging it involves three
key steps, which are summarized in the following:

1) calculate the empirical variogram from the observed
data, assessing the variance of data pairs at varying
distances;

2) fit a theoretical variogram model (e.g., spherical, ex-
ponential, or Gaussian) to the empirical variogram to
capture the spatial structure;

3) use the variogram model to solve the Kriging system
and estimate values at unsampled locations, providing
unbiased predictions with minimized variance.

Overall, Ordinary Kriging provides a robust framework for
capturing the spatial structure and correlation in the data, re-
sulting in more accurate interpolations when spatial continuity
is a significant factor.

B. Error Metric and Validation

The performance of each interpolation method was
evaluated using the root mean square error (RMSE), a widely
used metric that quantifies the average difference between
predicted and actual soil moisture values. RMSE provides
a single value that captures the magnitude of errors in the
predictions, with lower values indicating closer alignment



between the interpolated (predicted) values and the observed
(measured) data. To provide a thorough evaluation of each
method’s accuracy, error comparisons were made both
at individual timestamps and across the entire reference
period. This dual approach allows for an in-depth analysis
of performance at specific moments in time, as well as a
broader assessment of how the models perform over a longer
duration. By using RMSE in this way, the study ensures a
comprehensive and detailed understanding of each method’s
effectiveness in predicting soil moisture accurately.

Then, in order to effectively validate the accuracy of the
results and the generalizability of the interpolation models
across various scenarios, three widely recognized validation
approaches were employed: hold-out validation, k-fold cross-
validation, and Leave-One-Out cross-validation (LOOCV).
These methods help detect potential biases and variances in
the model predictions, ultimately enhancing the robustness of
the interpolation results.
Briefly, hold-out validation involves splitting the dataset into
training and testing sets, providing an initial assessment of
model performance on unobserved data. However, due to the
limited number of data points at each timestamp, this method
can exhibit high variability in the results, which may not
provide a consistent measure of model performance. K-fold
cross-validation addresses this variability by dividing the data
into k equal parts. The model is trained on k − 1 parts,
tested on the remaining one, and iteratively repeated for all
combinations. This approach leverages the entire dataset for
training and validation, providing more stable and reliable
results compared to hold-out validation. It ensures that each
data point gets a chance to be in the training and the testing
set, which improves the robustness of the validation process.
LOOCV, a special case of k-fold cross-validation where k = n
(n is the total number of observations), iteratively leaves out
one data point at a time for validation and train the model on
the remaining points. This method offers less biased (but with
greater variability) estimates and maximizes the use of avail-
able information, although it is computationally more intensive
due to the large number of iterations required. This validation
technique ensures that the model’s predictive performance is
tested against each individual data point, providing a thorough
assessment of the interpolation accuracy.

C. Statistical Analysis

To determine whether the differences in RMSEs between
the tested methods were statistically significant across the n
timestamps considered, the respective error distributions were
subjected to statistical validation. The analysis aimed to use
a parametric statistical test, which requires the assumption of
normality in the data distribution to produce consistent results.
To verify this assumption, the Shapiro-Wilk (S-W) test was
applied to assess the normality of the error differences. This
test was performed on a small random sample of observations
from each distribution, as it is particularly well-suited for small
to medium-sized samples. In this case, the Shapiro-Wilk test

maintains a good balance of accuracy and statistical power,
effectively evaluating the normality of the data distribution. In
detail, the Shapiro-Wilk test statistic W is defined as:

W =

(∑n
i=1 aid(i)

)2∑n
i=1(d(i) − d̄)2

(4)

where d(i) is the i-th order statistic (i.e., the between values
of two methods at the i-th timestamp), d is the mean
of the differences between values of two methods across
timestamps, and ai are the coefficients calculated based on
the expected values of d(i) from a standard normal distribution.

Therefore, (4) represents the ratio of the weighted sum
of the ordered sample values to the sum of the squared
differences between the sample values and their mean. The
Shapiro-Wilk test statistic ranges from 0 to 1, with a W value
close to 1 indicating that the sample is likely drawn from a
normal distribution. For completeness, the normality of the
data distribution was also checked using the Kolmogorov-
Smirnov (K-S) test on the entire sample.
If the normality assumption was confirmed, a classical paired
t-test was employed to determine the statistical significance of
the differences over the entire period. The test statistic related
to the paired t-test is defined as:

t =
d

sd/
√
n

(5)

where d is the mean and sd the standard deviation of the
differences between values of two methods across timestamps.

Under the null hypothesis which assumes no difference
between values across timestamps, the t-statistic follows a t-
distribution with n − 1 degrees of freedom [12]. These tests
were crucial in confirming whether one interpolation method
outperformed the other in accurately estimating soil moisture
levels across the spatial domain considered.

IV. ANALYSIS AND RESULTS

The analysis was conducted on a local machine using
Python version 3.10, chosen for its popularity in the sci-
entific community, extensive library support, and ease of
customization. Custom functions were developed from scratch
for specific tasks, while dedicated libraries facilitated other
operations. NumPy and Pandas were used for efficient nu-
merical computations and structured data manipulation, while
the SciPy, IDW, and PyKrige libraries were employed to
perform spatial interpolation tasks. The KD-Tree algorithm
was frequently utilized for distance calculations, and several
computations were optimized through parallel processing, im-
proving overall efficiency and reducing execution times.

The results compare the performance of IDW and OK
interpolation methods in estimating soil moisture across the
study area. The analysis was initially carried out by focusing
on specific times of a day in order to create interpolation maps.
An example of an interpolation map is presented in Fig. 3,



showing a heatmap of tensiometric soil levels generated using
the IDW method on July 15, 2023, at midnight.

Fig. 3. Interpolation map built with IDW on July 15, 2023 at midnight

At a general level, considering the entire dataset, IDW has
shown promising results in providing spatially distributed
estimates. However, this technique tends to smooth variations,
especially in areas with sparse sensor coverage. In contrast,
a sensitivity analysis was conducted for OK to evaluate the
impact of variogram parameters on the interpolation, selecting
the exponential model as the best fit due to moderate spatial
dependence. In fact, the empirical variogram closely matched
the theoretical variogram of the exponential model. Other
models displayed for the variogram were the spherical and
Gaussian models, which seemed to fit the observed data
slightly worse. These specific analyses are not included in
this article due to space limitations. At the end, OK also
demonstrated competitive performance.

The summary graph in Fig. 4 shows the average daily
RMSEs of the time series for the two methods. The respective
mean RMSE values were obtained using Holdout Validation,
with the dataset split into 80% for training and 20% for
testing at each timestamp. Based on the daily aggregated
average values, there is slight visual evidence favoring the
IDW method. The preference for a method seems to depend
on the time period considered: IDW consistently performs
slightly better than OK during the initial and final periods,
while both methods produce nearly equivalent results in the
central period.

Therefore, a quantitative validation campaign was con-
ducted to select the best interpolation model for the dataset.
More in detail, the validation techniques set out in the section
III-A were applied. Specifically, 80-20 Holdout Validation,

Fig. 4. Comparison of average RMSE values of IDW and OK over time

k-fold cross-validation with k = 6 (to ensure an integer
fold division among the 18 tensiometers) and LOOCV were
utilized. The validation techniques, including the fold division,
were applied individually to each timestamp. Consequently,
the distributions of RMSE values were analyzed over the
entire reference period. To this end, Fig. 5 presents boxplots
of the RMSE error distributions across timestamps for the two
methods, categorized by the validation technique used.

Fig. 5. Comparison of RMSE distributions for IDW and OK across various
Validation Techniques

Observing the boxplots, the methods show very similar
results, with IDW appearing to perform better than OK across
all validation techniques. In fact, the mean, quartiles, and
extremes of the RMSE distribution for the IDW method are
consistently lower across all validation techniques compared
to those of the OK method. However, since these differences
are minimal relative to the reference scale, it is crucial to
determine whether they are statistically significant.

A comprehensive statistical analysis was performed on the
differences RMSEIDW −RMSEOK to validate the results,
with a 5% significance level as the threshold for reliable
assessment. The assumption of normality in the RMSE dif-
ferences between the two interpolation methods across times-
tamps was first tested using the Shapiro-Wilk test on a random



sample of 50 observations, and the Kolmogorov-Smirnov test
on the full dataset. This analysis was conducted for each
validation method. The Shapiro-Wilk test consistently failed
to reject the null hypothesis of normality for the differences,
while the Kolmogorov-Smirnov test rejected normality except
for the k-fold cross-validation method. Given that k-fold cross-
validation is generally considered the most balanced validation
technique, and the K-S test is highly sensitive to minor
distribution deviations, it was reasonable to assume normality
in the RMSE differences.

Consequently, a paired t-test was applied, yielding highly
negative values and significant p-values across all validation
methods. This indicates that RMSEs are consistently lower
for the IDW method and that the differences are statistically
significant. The analysis, therefore, demonstrates the superi-
ority of IDW over OK for soil moisture estimation in the
study area. Key distribution values for the methods, along with
corresponding statistical test results, are presented in Table II.

TABLE II
RMSE COMPARISON OF INTERPOLATION METHODS

Validation IDW OK IDW - OK

Holdout

mean 90.13 97.43 -7.30
median 69.18 76.83 -7.65

std 67.04 71.58
S-W (p-value) 0.96 (0.088)
K-S (p-value) 0.08 (0.015)
t-test (p-value) -17.92 (≈ 0)

K-fold

mean 102.60 107.28 -4.68
median 93.50 96.77 -3.27

std 43.46 46.68
S-W (p-value) 0.96 (0.074)
K-S (p-value) 0.06 (0.118)
t-test (p-value) -9.88 (≈ 0)

LOOCV

mean 83.58 89.06 -5.48
median 75.04 80.08 -5.04

std 40.58 44.07
S-W (p-value) 0.97 (0.208)
K-S (p-value) 0.08 (0.012)
t-test (p-value) -11.49 (≈ 0)

Lastly, it is important to note that OK was found to have a
higher computational cost compared to IDW. This is particu-
larly relevant for large-scale applications, where computational
efficiency is a key consideration. The inferior performance of
OK is likely attributed to the relatively low number of sampled
points, making it less suitable for datasets with limited spatial
coverage. However, OK remains a viable method when more
tensiometers or additional sensors are deployed.

V. CONCLUSION AND FUTURE WORKS

This study highlights the pivotal role of interpolation tech-
niques in optimizing irrigation schedules and improving agri-
cultural productivity through accurate soil moisture estimation.
Among the techniques evaluated, Inverse Distance Weighting
(IDW) demonstrated superior performance in capturing local
soil moisture variability within the Tres region of Trentino. Its
simplicity and effectiveness in producing spatially distributed
estimates make IDW a practical choice for real-time agricul-
tural management in similar contexts.

However, it is essential to acknowledge the limitations of
this study. The findings are based on a specific geographic
area, where sensor distribution and environmental conditions
may influence interpolation outcomes. In areas with sparse
sensor coverage, IDW tended to smooth variations, potentially
affecting its applicability in more complex agricultural land-
scapes. Additionally, significant variability can occur between
closely spaced points due to differences in irrigation timing,
underscoring the need for methods that account for this factor.
Looking forward, future research could explore hybrid ap-
proaches that integrate machine learning algorithms or ad-
vanced geostatistical models, such as co-Kriging, that include
other correlated variables related to soil moisture. These
approaches could potentially enhance interpolation accuracy
across diverse agricultural settings by better capturing complex
spatial relationships and environmental factors.
Moreover, scalability studies are needed to assess the applica-
bility of these techniques in larger agricultural regions where
data density and variability present significant challenges.
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