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Capitolo 1

Introduzione

Il mercato immobiliare & una parte vitale dell’economia di un paese che si occupa
della costruzione, della gestione e della compravendita di beni immobili che possono
essere adibiti ad una moltitudine di scopi.

In questo contesto, la capacita di valutare e prevedere correttamente il prezzo di
vendita degli immobili ¢ diventata una priorita per i professionisti del settore e per gli
investitori. Il prezzo e infatti spesso difficile da stabilire perché e influenzato da una
serie di fattori sia interni che esterni all’immobile stesso, come la sua dimensione, lo
stato di manutenzione, la posizione geografica e la situazione economica. Per questo
motivo i modelli statistici sono un utile strumento a supporto delle finalita previsive.
Nell’ambito di questa tesi si comparano quindi i diversi modelli previsivi per il
mercato immobiliare per stabilire il valore delle abitazioni nel modo piu accurato
possibile. In particolare, si prestera attenzione alla componente spaziale, poiché la
posizione geografica dell’immobile risulta essere un elemento chiave.

Si utilizzeranno sia modelli previsivi tradizionali che spaziali. I modelli regressivi
tradizionali sono stati ampiamente impiegati in quest’ambito e tengono conto della
collocazione geografica attraverso I'introduzione di apposite variabili. D’altra parte,
i modelli spaziali incorporano le informazioni sulla vicinanza geografica delle osser-
vazioni direttamente nel metodo di costruzione ed esprimono l'intensita di queste
relazioni esplicitamente attraverso appositi parametri. E’ dunque interessante andare
a studiare e confrontare questi due diversi approcci.

Un altro problema importante ¢ rappresentato dalla gestione dei dati mancanti.
In questa tipologia di problemi, i dati mancanti sono spesso presenti in grandi
quantita, soprattutto per quanto riguarda le informazioni sulle caratteristiche interne
all’immobile. Il corretto trattamento dei dati mancanti € quindi parte integrante
dell’analisi. Cio comporta la necessita di utilizzare delle tecniche di imputazione
adeguate a stimare i valori mancanti.

La tesi si concentrera sullo sviluppo di un’applicazione per il mercato immobiliare di
Madrid. Questa citta rappresenta un’area geografica estremamente interessante con
un settore vario, ampio e in costante evoluzione. Oltretutto, quest’area di studio
& caratterizzata dalla disponibilita di dati di alta qualita provenienti dai principali
portali immobiliari spagnoli. Tali immobili sono infatti descritti da numerose infor-
mazioni e, differentemente dai portali di altri paesi, viene spesso indicato 'indirizzo
preciso dell’abitazione.






Capitolo 2

Dati Mancanti

I metodi della statistica tradizionale sono stati sviluppati per analizzare insiemi di
dati rappresentabili e trattabili sotto forma matriciale come prodotto di unita e
variabili. T dati mancanti (o missing data) sono in questo senso un problema che
complica I'analisi statistica dei dati raccolti in molte discipline.

In un contesto di regressione, gestire adeguatamente i dati mancanti migliora 1’effica-
cia dei modelli che verranno successivamente applicati ed ¢ quindi fondamentale per
ottenere risultati predittivi accurati. Avere a disposizione i dati completi permette
difatti di descrivere meglio la relazione tra le variabili esplicative e la variable risposta.
I dati mancanti sono inoltre diffusamente presenti quando viene analizzato il mercato
immobiliare e, in particolare, nel caso in cui si voglia trattare il problema della deter-
minazione dei prezzi degli immobili. Spesso, infatti, i dati sul mercato immobiliare
sono gestiti da privati o da agenzie immobiliari che non sono a conoscenza di parte
delle informazioni sulle proprieta. O, ancora, possono trascurare delle informazioni
che sono in realta determinanti al fine di associare un valore di vendita all’immobile.
L’analisi dei dati mancanti &€ quindi parte integrante del problema previsionale che si
sta affrontando ed & necessario conoscere i metodi di trattamento dei dati mancanti
per poter scegliere adeguatamente quello piu adatto alle situazioni specifiche.

2.1 Tipologia di Dati Mancanti

I1 processo che regola le probabilita che determinano la mancanza dei dati (missing-
ness) ¢ chiamato meccanismo dei dati mancanti o meccanismo di risposta.

In genere il meccanismo di risposta non ¢ sotto il controllo degli sperimentatori,
ma si fanno ipotesi su di esso. La validita dell’analisi dipende dal fatto che queste
ipotesi siano valide per i dati in questione. Il modello del processo prende invece il
nome di modello dei dati mancanti o modello di risposta.

Un primo sistema di classificazione dei dati mancanti e stato formulato da Donald
B. Rubin nel 1976. In particolare, si possono avere dati di tipo “Missing Completely
at Random” (MCAR), “Missing at Random” (MAR) o “Missing not at Random”
(MNAR) a seconda del modello di risposta sottostante.

Per descrivere le varie tipologie di dati mancanti, si utilizzera un insieme di assunzioni
comuni e una conseguente specifica notazione. In questa parte della trattazione non
si distinguera tra variabili esplicative e variabile risposta. Infatti, la gestione della
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missingness non influenza 'analisi di regressione.

Si indica con X = {z;5, 4 = 1,...,n, j = 1,...,p} la matrice n x p contenente
i valori dei dati sulle p variabili per le n unita statistiche del campione o della
popolazione di riferimento. Viene poi introdotta la matrice indicatrice di risposta
R={ry,i=1,...,n, j=1,...,p} di dimensione n X p che denota la presenza o
I'assenza di un determinato dato. Se il valore z;; viene osservato, r;; assume un
valore pari a 1, mentre se x;; risulta mancante, 7;; ¢ pari a 0.

Si assume che la matrice indicatrice di risposta R sia completamente nota, ovvero di
essere a conoscenza della posizione precisa di ogni singolo dato mancante. E’ impor-
tante specificare che quando gli indicatori di risposta sono nulli, questi mascherano i
valori reali, ovvero si suppone per vera l’esistenza di tutti i dati.

In questo scenario X = {Xoss, Ximis }, dove Xyss € Uinsieme dei dati osservati, mentre
Ximis € I'insieme dei dati mancanti. La matrice X rappresenta quindi ’insieme dei
dati ipoteticamente completi.

La distribuzione di R puo dipendere da X tramite il disegno campionario o per
aleatorieta. Questa relazione ¢ descritta dal modello di risposta P(R|Xss, Xmiss, ¥),
dove 7 indica 'insieme dei parametri che governano tale modello.

2.1.1 Missing Completely at Random

Se la probabilita di essere mancante € la stessa per tutte le osservazioni, si dice
che i dati sono completamente mancanti aleatoriamente (MCAR). Cio implica che
il meccanismo dei dati mancanti sia indipendente dai dati osservati e da quelli
mancanti.

In termini formali i dati sono detti MCAR se:

P(R = 0|X0557Xmi88)/17[}) = P(R = 0|¢) (21)

dove la probabilita di essere mancante dipende solo da alcuni parametri ¢, ovvero
dalla probabilita comune di essere mancante.

Un esempio si ha quando viene estratto un campione casuale da una popolazione, in
cui ogni individuo ha la stessa probabilita di essere incluso nel campione. I dati non
osservati degli individui della popolazione che non sono stati inclusi nel campione
sono di tipo MCAR.

Per questo tipo di dati possiamo ignorare molte delle complessita che sorgono a causa
della presenza dei dati mancanti, ad esclusione della perdita di informazione. Infatti,
la caratteristica fondamentale degli MCAR & che i dati osservati possono essere
considerati come un campione casuale dei dati completi. Di conseguenza, i momenti
e la distribuzione congiunta dei dati osservati non differiscono dai corrispondenti
momenti e dalla rispettiva distribuzione congiunta dei dati completi.

Si hanno conseguentemente importanti implicazioni. In primo luogo, i “casi completi”
(unita statistiche prive di dati mancanti, si differenziano dai dati completi) possono
essere considerati come un campione casuale della popolazione di riferimento; inoltre,
qualsiasi metodo di analisi che produca misure inferenziali valide in assenza di dati
mancanti, produrra misure inferenziali valide, anche se non efficienti, quando I’analisi
¢ limitata ai soli casi completi. Questo modo di procedere viene spesso definito
analisi del caso completo.
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In secondo luogo, le stesse conclusioni valgono per tutte le unita indipendentemente
dal pattern dei dati mancanti. La distribuzione condizionata di X,ss per queste
unita coincide difatti con la distribuzione di X per la popolazione di riferimento.
Infine, la distribuzione di X,,;s per le unita con un qualsiasi pattern di dati mancanti
combacia con la distribuzione di X per i casi completi.

Di conseguenza, cosi come nell’analisi del caso completo, anche tutti i dati osservati
disponibili possono essere utilizzati per ottenere stime inferenziali valide. In generale,
tutti i metodi di analisi che producono misure inferenziali valide in assenza di dati
mancanti, produrranno misure inferenziali valide anche quando 1’analisi si basa sui
soli dati osservati o anche quando e limitata ai casi completi.

Sebbene sia facilmente trattabile, il modello di risposta sottostante spesso non &
realistico perché si basa su ipotesi troppo restrittive.

2.1.2 Missing at Random

Se la probabilita di essere mancanti ¢ la stessa solo all’interno dei gruppi denotati dai
dati osservati, allora i dati sono mancanti aleatoriamente (MAR). In altre parole, se
i soggetti sono stratificati sulla base di valori simili per i dati osservati, la mancanza
& semplicemente il risultato di un meccanismo casuale che non dipende dai valori
dei dati non osservati.

Formalmente, i dati sono MAR se:

P(R = 0|Xossa Xmis»d’) = P(R = 0|Xossaw) (22)

dove la probabilita di essere mancante dipende dai dati osservati e dai parametri del
modello, ma non dagli specifici valori mancanti che si sarebbero dovuti osservare.

Un esempio di tipo MAR si verifica quando si estrae un campione casuale da
una popolazione, dove la probabilita di inclusione dipende da qualche proprieta nota.
L’ipotesi MAR puo essere considerata anche come una generalizzazione dell’ipotesi
MCAR e spesso risulta essere piu plausibile di quest’ultima in molte applicazioni.
E’ essenziale analizzare alcune proprieta degli MAR. Innanzitutto, poiché il meccani-
smo dei dati mancanti dipende da X, la distribuzione di X in ciascuno degli strati
definiti dai modelli di risposta differisce dalla distribuzione di X nella popolazione
di riferimento. Questo implica che i casi completi formeranno un campione distorto
della popolazione di riferimento e la distribuzione condizionata di X,ss per le unita
con un qualsiasi modello di risposta non coincide con la distribuzione di X per la
popolazione obiettivo.

Pertanto, le misure inferenziali basate sui casi completi o sui dati osservati sono
necessariamente distorte. Tuttavia, la distribuzione condizionata dei dati mancanti
Xomis, dati i valori osservati X,qs, € uguale alla distribuzione condizionata delle
osservazioni corrispondenti ai casi completi per lo stesso condizionamento, a patto
che i casi completi abbiano gli stessi valori di X,ss.

Pertanto, quando i dati sono MAR, i valori mancanti possono essere validamente
imputati utilizzando i dati osservati e un modello corretto per la distribuzione di X.
Poiché il tipo MCAR & uno caso speciale di MAR, valgono le stesse affermazioni
appena esposte sull’imputazione.
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Per questi motivi, nella pratica, i moderni metodi di imputazione generalmente
partono dall’ipotesi che i dati mancanti siano di tipo MAR.

2.1.3 Missing not at Random

Se la probabilita di essere mancante dipende da effetti sconosciuti a colui che conduce
l’analisi, allora si & in presenza di dati mancanti non aleatoriamente (MNAR).
In altri termini, il modello di risposta non ¢ semplificabile ed ¢ esprimibile come:

P(R = 0|Xoss’ X’I’I’Lisa ¢) (23)

quindi la probabilita di essere mancante dipende dai dati osservati, dai dati mancanti
stessi e dai parametri del modello.

Questa situazione si puo verificare ad esempio quando nel campionamento di una
popolazione, la probabilita di risposta dipende da caratteristiche non note o che
sfuggono dal processo di misurazione. La gestione dei dati mancanti di tipo MNAR
puo risultare molto complessa. Solitamente per analizzare questi dati € necessario
raccogliere piu informazioni sulle cause delle mancate risposte o eseguire delle analisi
di sensitivita specifiche.

Questo ¢ dovuto al fatto che quando i dati sono MNAR, quasi tutti i metodi di
analisi standard non sono validi. Ad esempio, i metodi basati sulla verosimiglianza
che ignorano il meccanismo dei dati mancanti producono stime distorte.

Per ottenere stimatori validi, si possono utilizzare dei modelli congiunti per i dati
osservati e per il meccanismo dei dati mancanti. I tre approcci principali basati sul
modello sono la selezione, la mistura di pattern e i modelli a parametri condivisi.
In alternativa, nel tempo sono stati introdotti dei metodi che non richiedono la
specificazione della distribuzione congiunta dei dati osservati.

2.1.4 Verifica del tipo di Missingness

In molti contesti puo essere utile dover verificare il tipo di dato mancante. Il processo
di verifica non ¢ sempre possibile o intuitivo.

Per verificare I'ipotesi di MCAR contro quella di MAR sono stati proposti numerosi
test statistici, benché non siano molto diffusi e utilizzati nella pratica. Tutti questi
test hanno come presupposto che i dati non siano di tipo MNAR.

Il metodo piu semplice per valutare 'MCAR consiste nell’utilizzare una serie di test
t a due a due indipendenti per confrontare i sottogruppi dei dati mancanti. Questo
approccio separa i casi mancanti da quelli completi su una particolare variabile ed
esamina le differenze medie del gruppo su altre variabili del set di dati. Il meccanismo
MCAR implica che i casi completi debbano essere in media uguali a quelli con valori
mancanti. Di conseguenza, un test ¢t non significativo dimostra che i dati sono
MCAR, in caso contrario, suggerisce che i dati sono MAR o MNAR.

Un altro possibile approccio prende il nome di test di Little. Questo test ¢ un’esten-
sione multivariata dell’approccio del test ¢ che valuta simultaneamente le differenze
medie su ogni variabile dell’insieme dei dati. A differenza dei test ¢ univariati, la
procedura di Little & un test globale a confronti multipli per la verifica di MCAR che
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si applica all’intero set di dati. Nonostante questi test siano efficaci per verificare
I’assunzione di MCAR, non forniscono elementi per identificare le potenziali variabili
dipendenti dal meccanismo dei dati mancanti.

Una verifica oggettiva che non puo essere fatta e quella tra MAR e MNAR. Questo
¢ dovuto al fatto che le informazioni necessarie per un tale test risultano mancanti.

2.2 Ignorabilita

I modelli per i dati mancanti dipendono esplicitamente da alcuni parametri ¢ che
sono in genere sconosciuti e non sono di interesse per l'analisi.

In ambito parametrico, il focus dell’analisi ¢ invece incentrato su dei parametri
di interesse 0 legati alle caratteristiche dei dati. Nella regressione parametrica 6
corrisponde all’insieme dei coefficienti di regressione e/o alle statistiche di sintesi
della variabile risposta. L’importanza pratica della distinzione tra i diversi tipi di
dato mancante consiste nel fatto che essa definisce le condizioni in cui € possibile
stimare accuratamente i parametri 6 senza la necessita di conoscere ).

I dati effettivamente osservati sono X,ss € R, mentre la funzione di densita congiunta
f(Xoss, R0, 1) di X,s5 € R dipende sia dai parametri d’interesse 6 che dai parametri
1. La funzione di verosimiglianza di 6 e ¢ € proporzionale alla loro densita congiunta:

L(0, 9| Xoss, R) o< f(X, R|0,¢) (2.4)

dove L(-) ¢ la funzione di verosimiglianza.

Il meccanismo dei dati mancanti ¢ ignorabile per l'inferenza basata sulla vero-
simiglianza se la funzione di verosimiglianza non dipende da X,,;s. Esploreremo
meglio le implicazioni sulla teoria della verosimiglianza nella sezione 2.3.2.

E’ importante sapere che in ogni caso questo proprieta ¢ valida se vengono rispettate
le seguenti condizioni:

e i dati mancanti sono del tipo MAR (o MCAR);

e i parametri 6 e 1 sono distinti, ovvero lo spazio congiunto dei parametri (v, 6)
¢ il prodotto dello spazio dei parametri di 6 e dello spazio dei parametri di .

La prima condizione € in genere piu rilevante, in quanto la condizione sui parame-
tri e difficile da verificare, ma risulta in quasi tutte le casistiche intuitiva e ragionevole.

Nella costruzione dei modelli di imputazione ¢ di particolare interesse definire
la distribuzione a posteriori dei dati mancanti condizionata ai dati osservati e al mec-
canismo dei dati mancanti. Tale distribuzione viene indicata con P(X;is|Xoss, R)-
Nel caso in cui il meccanismo di risposta sia ignorabile, si pud dimostrare che la
distribuzione a posteriori non dipende dal meccanismo di risposta stesso, ovvero:

P(XmiS|X0587R) - P(Xmis’Xoss) (25)

Questo implica che la distribuzione dei dati X sia la stessa tra il gruppo di dati
osservati e quello dei dati mancanti.:

P(X|Xpss, R =1) = P(X|Xpss, R = 0) (2.6)
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Di conseguenza, se il modello dei dati mancanti ¢ ignorabile, si puo formulare
la distribuzione a posteriori a partire dai dati osservati e utilizzare il modello in
questione per I'imputazione.

Al contrario, se il meccanismo dei dati mancanti non € ignorabile, non & possibile
trarre conclusioni sulla distribuzione a posteriori e quindi utilizzare il modello
associato ad essa.

2.3 Trattamento dei Dati Mancanti

La presenza dei dati mancanti implica necessariamente un trattamento mirato.
Dopo aver assunto o verificato il tipo dei dati mancanti bisogna infatti valutare la
possibilita di procedere con I'imputazione delle informazioni non presenti nel dataset.
In letteratura esistono numerose metodologie per gestire i dati mancanti. In questo
testo presenteremo diversi tipi di approcci e ne studieremo le proprieta statistiche.

2.3.1 Metodi Naive

I metodi pit comunemente utilizzati per trattare la missingness ignorano durante
I’analisi i dati mancanti, rimuovono le osservazioni incomplete o consistono in forme
semplici di imputazione, ossia metodi tramite i quali i dati assenti sono effettivamente
sostituiti per consentire un’analisi completa dei dati.

Questi approcci generalmente non sono molto affidabili e spesso conducono a stime
distorte e non valide per effettuare previsioni.

Listwise Deletion

L’approccio che veniva un tempo frequentemente utilizzato per trattare i dati
mancanti nella maggior parte delle analisi statistiche si riduce semplicemente alla
cancellazione di tutte le osservazioni che li presentano. Questo approccio € chiamato
Cancellazione dalla Lista ("Listwise Deletion") o equivalentemente, come sopra anti-
cipato, analisi del caso completo, in quanto utilizza solo le osservazioni (o i casi) in
cui tutte le variabili sono state osservate.

La Listwise Deletion ¢ un metodo molto semplice per gestire i dati mancanti, poiché
non richiede alcun calcolo o manipolazione dei dati e permette di ottenere una solu-
zione rapida per tale problema. Questa procedura puo portare d’altra parte ad una
elevata eliminazione delle osservazioni e ad una conseguente perdita di informazione
non trascurabile.

Sotto l'ipotesi di un meccanismo di risposta di tipo MCAR, con la Listwise Deletion
tutte le proprieta che sono valide per il modello statistico utilizzato rimarranno valide.
Specificatamente, a livello parametrico le stime non risulteranno distorte. Inoltre,
poiché con la Listwise Deletion la numerosita campionaria diminuisce, gli errori
standard prodotti dai modelli di regressione applicati saranno maggiori rispetto agli
errori standard che sarebbero stati prodotti nel caso in cui i dati mancanti fossero
stati osservati. Cio nonostante, le stime degli errori standard risultano non distorte.
Come visto precedentemente, I'ipotesi di MCAR e pero spesso poco realistica.

Se i dati mancanti non sono MCAR, la Listwise Deletion non restituira stime affida-
bili dei parametri, poiché la relazione tra le variabili da cui dipende il meccanismo
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dei dati mancanti e la variabile su cui sono presenti i dati mancanti implichera una
distorsione nei parametri indipendentemente dal tipo di analisi che viene realizzata.
Nell’ambito dell’analisi della regressione, la Listwise Deletion possiede pero alcune
caratteristiche uniche che la rendono interessante in alcuni contesti. In alcuni casi
puo fornire stime analoghe alle procedure piu sofisticate. Se i valori mancanti sono
infatti associati soltanto alla variabile risposta (e non alle variabili esplicative), la
Listwise Deletion ¢ equivalente a livello di proprieta ai metodi di imputazione multi-
pla per la determinazione dei coefficienti di regressione. Le quantita che dipendono
dalla corretta distribuzione marginale della variabile dipendente, come la media o il
coefficiente di determinazione R?, richiedono pero I'ipotesi di MCAR.

Esistono anche casi in cui il metodo in esame puod superare gli altri metodi per la
gestione dei dati mancanti. Il primo caso speciale si verifica quando la probabilita di
missingness non dipende dalla variabile risposta, mentre il secondo caso si presenta
con ’applicazione della regressione logistica quando la probabilita di mancare dipen-
de dalla sola risposta o da un’unica esplicativa.

In sintesi, la Listwise Deletion non possiede buone proprieta per nessuno dei tre tipi
di dato mancante, ad esclusione di casi studio molto specifici. Per questo motivo
risulta un metodo sconsigliabile per la maggior parte delle analisi.

Pairwise Deletion

Un’alternativa al caso precedente e quella di utilizzare un metodo che elimina solo
parzialmente le osservazioni. Questo approccio per la gestione dei dati mancanti &
chiamato Cancellazione a Coppie ("Pairwise Deletion") o analisi del caso disponibile
ed ¢ un metodo per gestire i dati mancanti che prevede la conseguente applicazione
dei modelli lineari e non ¢ adatta ad altre situazioni.

Il metodo stima le medie e la matrice di varianze e covarianze utilizzando tutti i
dati disponibili. Pertanto, le medie e le varianze per le singole variabili sono stimate
impiegando i dati osservati per quella variabile, mentre le covarianze tra le variabili
sono stimate a due a due utilizzando tutte le osservazioni con dati disponibili per
entrambe le variabili.

Successivamente, la matrice delle statistiche descrittive di sintesi viene utilizzata con
una metodologia specifica per I’analisi lineare che si vuole compiere, come il modello
regressivo lineare o il modello per I'analisi della varianza.

Come nel caso della Listwise Deletion, i parametri ottenuti dalla Pairwise Deletion
sono non distorti sotto l'ipotesi di MCAR. Quando i dati sono MAR, la Pairwise
Deletion produce invece stime soggette a distorsione.

La stima degli errori standard in un contesto di regressione con la Pairwise Deletion ¢
tuttavia molto complessa, poiché ogni matrice di covarianza puod essere teoricamente
stimata con un numero differente di osservazioni. Poiché gli errori standard sono una
funzione della dimensione del campione, & impossibile stimare correttamente questi
errori. Un’ulteriore complicazione ¢ dovuta al fatto che le matrici di covarianza e di
correlazione ottenute con questo metodo non sono necessariamente definite positive.
E’ importante osservare che nel caso in cui la correlazione tra le variabili & bassa, la
Pairwise Deletion offre delle stime piu efficienti della Listiwise Deletion. Al contrario,
se la correlazione ¢ elevata, risulta meno efficiente.
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In sintesi, la Pairwise Deletion rappresenta un piccolo miglioramento rispetto alla
Listiwise Deletion a livello teorico, in quanto fa uso di tutti i dati disponibili, tuttavia
rimane insoddisfaciente.

Inoltre, sebbene non sia impegnativa dal punto di vista computazionale, la Pairwise
Deletion ¢ un metodo che molto spesso risulta complicato da utilizzare in molti
contesti applicativi.

Imputazione con Media, Moda e Mediana

Il metodo di imputazione piu semplice consiste nel sostituire i valori mancanti con
la media, la moda o la mediana della specifica variabile per cui il dato ¢ mancante.
Per questo motivo, tale metodo prende anche il nome di imputazione della media,
moda o mediana non condizionata.

Si evidenzia che la media puo essere utilizzata soltanto per le variabili quantitative,
la mediana per le variabili quantitative o qualitative ordinali, infine la moda per
tutti i tipi di variabili.

Questo metodo modifica la distribuzione delle variabili in molteplici modi e ha
conseguenze importanti nelle analisi successive.

L’imputazione della media, ad esempio, riduce la variabilita dei dati, in quanto lo
stesso valore di centralita viene assegnato per tutti i valori mancanti. Questo porta
ad una sottostima della varianza per la suddetta variabile e altera la relazione di
covarianza con le altre variabili presenti. L’imputazione della media portera quindi
a stime distorte per quasi tutti i parametri diversi dalla media, oltre al fatto che
produrra errori standard piu bassi a causa della diminuzione della variabilita. Se i
dati non sono MCAR, anche la stima della media puo risultare distorta.

Simili conclusioni si possono trarre con 'imputazione di moda o mediana.

Ad esempio, I'imputazione di numerosi valori con la mediana (e anche con la media)
puo trasformare una distribuzione unimodale in bimodale.

L’imputazione con media, moda e mediana costituisce una soluzione rapida al
problema dei dati mancanti e non richiede un costo computazionale intensivo. In ogni
caso, non avendo buone proprieta, questo metodo di imputazione viene sconsigliato
per tutti i tipi di analisi.

2.3.2 Metodi di Massima Verosimiglianza e Bayesiani

I metodi basati sulla funzione di verosimiglianza o sulla statistica bayesiana non
sono veri e propri metodi di imputazione, ma si basano invece sui dati disponibili.

Piu precisamente, per questi metodi 'imputazione viene definita implicita, perché,
nonostante i valori di imputazione non siano esplicitati, si suppone la loro esistenza.
In generale, i metodi per la gestione dei dati mancanti basati sulla verosimiglianza
presuppongono l’esistenza di un modello parametrico per i dati completi e, nei casi
in cui si ipotizza che la missingness non sia ignorabile, richiedono anche un modello
parametrico per il meccanismo dei dati mancanti.

Con i dati mancanti, I'inferenza di verosimiglianza si basa sulla funzione di verosimi-
glianza dei dati disponibili:
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L(07w|Xossa R) =cX /f(X7R|0>w)dezs

=cX /f(Xoss, Xonis, R0, ) [ (R| Xoss, Ximis, ) d X mis 0
dove ¢ & un fattore che non dipende da (6,1)).
Sotto l'ipotesi di ignorabilita del meccanismo dei dati mancanti si ottiene:
L0, Xons, B) = 5 [ Josss Xl )R Koo )Xo

=cX f(Xoss’H)f(R‘XOSS’ 1/})

La stima di massima verosimiglianza (MLE) di 6 (e v) ¢ il valore che massimizza
L(0,v|Xsss, R). In campioni di grandi dimensioni, la MLE ha una distribuzione
approssimativamente normale con matrice di covarianza data dall’inverso della ma-
trice di informazione osservata. Gli errori standard che ne conseguono tengono
adeguatamente in considerazione del fatto che alcuni dati siano mancanti.
Nell’approccio bayesiano, infatti, ai parametri (0, ) viene assegnata una distribuzio-
ne a priori, mentre l'inferenza per 6 (e 1) si basa sulla sua distribuzione a posteriori,
ottenuta moltiplicando la verosimiglianza dei dati osservati per la distribuzione a
priori di (0,v).

Le stime puntuali di (,1) possono essere ottenute come misure di sintesi della
distribuzione a posteriori. L’incertezza sulle stime puntuali puo essere espressa in
termini di deviazioni standard a posteriori o di intervalli di credibilita basati sui
quantili della distribuzione a posteriori.

Il calcolo di questi intervalli solitamente prevede 1’estrazione dalla distribuzione a
posteriori tramite simulazione di Markov Chain Monte Carlo (MCMC). Per campioni
con numerosita campionaria ridotta l'inferenza derivante € particolarmente sensibile
alla scelta della distribuzone a priori.

Un’importante distinzione si deve fare quando si ipotizza 'ignorabilita o la non
ignorabilita del meccanismo dei dati mancanti. Quando si ipotizza che la mancanza
sia ignorabile, i metodi basati sulla verosimiglianza (e in modo simile per i metodi
bayesiani) imputano implicitamente i valori mancanti trattando e stimando i para-
metri per f(X|¢). In questo caso la verosimiglianza si basa esclusivamente sulla
distribuzione marginale dei dati osservati e le stime si ottengono massimizzando la
funzione di verosimiglianza. Il contributo di verosimiglianza per ciascuna osserva-
zione ¢ f(X,ss5]10). In un certo senso, i dati mancanti sono validamente previsti dai
dati osservati attraverso il modello per il valore atteso condizionato E(Xis| Xoss, ©)
e il modello per la covarianza.

In questa forma di imputazione i parametri sono stimati massimizzando la verosimi-
glianza con algoritmi appositi come I’algoritmo EM o ’algoritmo di Newton-Raphson.
Particolarmente efficiente & 1'algoritmo EM (Expectation-Maximization) che risulta
spesso essere I'implementazione standard.

L’EM e infatti un algoritmo iterativo che si sviluppa in due fasi. Nella prima fase
(fase di Expectation) si attua I'imputazione dei valori mancanti con i rispettivi valori
attesi condizionati, date le risposte osservate e le stime dei parametri dell’iterazione
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precedente. Successivamente, in seconda fase (fase di Maximization) si massimizzano
le probabilita per i "dati completi" che ne sono risultati.

Pertanto, quando la mancanza ¢ ignorabile, I'inferenza basata sulla verosimiglianza
non richiede la specificazione del meccanismo dei dati mancanti, ma richiede ipotesi
distributive complete su X. Inoltre, I'intero modello per f(X,ss|?’) deve essere spe-
cificato correttamente. Qualsiasi errata specificazione del modello per la covarianza
produrra, in generale, stime distorte della media della variabile dipendente.

Se il meccanismo dei dati mancanti non & ignorabile, & necessario impiegare un
modello congiunto dei dati (modelli di selezione o di mistura di pattern) e le misure
inferenziali tendono a divenire estremamente sensibili alle ipotesi del modello che
non sono verificabili.

2.3.3 Metodi di Ponderazione

La ponderazione ¢ un insieme di metodi per ridurre la distorsione quando la proba-
bilita di inclusione delle unita nel campione varia.

Con questi metodi, la sottorappresentazione (o sovraraprresentazione) di alcuni
gruppi di unita tra i dati osservati viene presa in considerazione e corretta. Questo
avviene spesso nelle indagini campionarie dove i rispondenti non hanno la stessa
probabilita di essere inclusi.

Nel tempo sono stati proposti numerosi approcci che prendono generalmente il nome
di metodi a propensione ponderata o a probabilita inversa ponderata (IPW).

In quest’ottica le osservazioni sono ponderate in base ai pesi di progetto, i quali
sono inversamente proporzionali alla probabilita di essere selezionati nell’indagine.
In caso di dati mancanti, i casi completi vengono ripesati in base ai pesi di progetto
e aggiustati per contrastare gli effetti di selezione prodotti dalle mancate risposte.
Questo metodo ¢ ampiamente utilizzato nella statistica sociale.

L’implementazione ¢ relativamente semplice in quanto € necessario un solo set di pesi
per tutte le variabili incomplete. Tuttavia, scarta i dati mediante Listwise Deletion
e non puo gestire le osservazioni parziali.

Le forme derivanti per esprimere la varianza dei pesi di regressione e delle correlazioni
tendono a essere complesse o non esistenti. A differenza dei metodi pesati per i
disegni campionari, i pesi sono stimati dai dati osservati e vengono solitamente fissati.
Le implicazioni di questa procedura non risultano tuttora ben definite.

A partire dal ventunesimo secolo, si & registrato un maggiore interesse per le procedu-
re di ponderazione robuste. Uno di questi metodi viene detto metodo doppiamente
robusto e richiede la specificazione di tre modelli: il primo modello ¢ quello di
interesse per i dati completi, il secondo modello e quello di risposta e il terzo ed
ultimo modello & un modello congiunto per i predittori e per ’esito.

La doppia proprieta di robustezza afferma che se uno tra il secondo e il terzo modello
¢ errato (ma non entrambi), le stime del primo modello sono ancora coerenti e
utilizzabili al fine dell’analisi.

Concludendo, i metodi di ponderazione sono piu adatti per trattare i pattern di
dati mancanti monotoni, ovvero quando la mancanza di una certa variabile X; per
un’unita implica che tutte le variabili X}, che seguono (k > j) o che la precedono
(k < j) siano mancanti per tutte le altre unita. Sebbene infatti i metodi di pon-
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derazione possano essere applicati a modelli di dati mancanti non monotoni, nella
pratica questi sono piu complessi da formulare e difficili da implementare.

2.3.4 Metodi di Regressione Parametrica

Un’ampia gamma di metodi di imputazione utilizzati & quella dei modelli di regres-
sione parametrica. Questi modelli sono molto diffusi per le analisi di regressione
classiche, ma trovano qui spazio anche per il trattamento dei dati mancanti. Nel
seguito andiamo quindi a mostrare alcuni di questi modelli.

Modello di Regressione Lineare

Nell’ambito del trattamento dei dati mancanti, 1'utilizzo dei modelli di regressione
lineare prende spesso il nome di imputazione della media condizionata. Questo
serve per mettere in relazione questo metodo con I'imputazione della media non
condizionata. Un modo per migliorare I'imputazione della media consiste infatti
nell'imputare la media della variabile condizionata ai valori osservati sulle altre
variabili tramite il modello di regressione in questione.

A differenza dei metodi Naive per i dati mancanti, I'imputazione per regressione
lineare produce stime corrette dei parametri sia per gli MCAR che per gli MAR, a
condizione che le variabili che influenzano la mancanza dei dati negli MAR siano
incluse nei modelli statistici utilizzati.

Inoltre, non solo consente di utilizzare tutti i dati disponibili, ma sfrutta inoltre
questi utlimi per migliorare le imputazioni dei dati mancanti.

L’aspetto negativo dell’imputazione per regressione lineare ¢ il fatto che le medie
condizionate per i valori mancanti rafforzeranno le relazioni tra le variabili, poiché
tutti i valori si trovano sulla retta di regressione. Questo portera a una sottostima
della variabilita dei dati e degli errori standard.

L’imputazione per regressione lineare rimane di fatto un metodo relativamente facile
da gestire ed implementare, ma non costituisce la scelta primaria per I'imputazione
dei dati mancanti. E’ da sottolinare infine che questo modello puo funzionare soltanto
in presenza di variabili quantitative o codificate come tali.

Modelli di Regressione Lineare Generalizzati

In presenza di variabili qualitative si puo ricorrere ad una classe di modelli pitt ampia
rispetto ai modelli di regressione lineare. I modelli lineari generalizzati estendono
infatti il concetto di regressione lineare introducendo una famiglia distributiva comune.
Si rimanda all’apposita sezione del capitolo 3 per un trattamento formale completo.
In ogni caso, a seconda della natura della variabile viene associato un determinato
modello. Per le variabili qualitative dicotomiche viene generalmente utilizzato il
modello di regressione logistica, per le variabili qualitative multicategoriche si ricorre
al modello di regressione logistica multinomiale, e, infine, per le variabili qualitative
multicategoriche ordinate si utilizza il modello di regressione logistica multinomiale
ordinato (o modello di probabilita proporzionale).
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Modello di Regressione Stocastica

Il problema principale dell’imputazione con il modello di regressione lineare ¢ il fatto
che i valori che vengono sostituiti risultano essere di tipo deterministico e producono
cosl necessariamente sempre lo stesso insieme di valori. La stima di una retta di
regressione, tuttavia, ¢ sempre associata ad alcuni errori residui intorno alla retta di
regressione.

Un modo naturale per gestire il problema delle imputazioni deterministiche ¢ quindi
quello di aggiungere un termine di errore casuale a ogni valore imputato a partire
dalla distribuzione normale, dove la deviazione standard per la distribuzione normale
¢ presa dall’errore standard residuo del modello.

Questo metodo di generazione delle imputazioni casuali dalla media condizionata
migliora leggermente la situazione, aumentando la varianza delle variabili e produ-
cendo errori standard piu elevati in un contesto di regressione. Tuttavia, le varianze
e gli errori standard saranno ancora troppo ridotti rispetto alla controparte reale.
II motivo per cui gli errori standard e le varianze rimangono troppo piccoli & dato
dal fatto che, in un contesto di regressione, l'incertezza delle stime non dipende solo
dai residui, ma anche dall’incertezza dei parametri stimati.

Poiché i parametri di regressione, in base al Teorema del Limite Centrale, seguono
una distribuzione approssimativamente normale se la dimensione del campione e
elevata, o una distribuzione normale esatta se i residui sono distribuiti normalmente,
¢ possibile generare le imputazioni estraendo casualmente i parametri tenendo conto
di un termine di errore. In questo modo si ricrea 'incertezza associata alla regressione
e si minimizza il problema della sottostima delle varianze e degli errori standard.
Un aspetto negativo di questo approccio € che gli stimatori dei parametri non
mostrano delle buone proprieta di efficienza. Questo problema puo essere risolto
utilizzando tale metodo in un contesto di imputazione multipla che verra descritto
successivamente.

L’imputazione con il modello di regressione stocastica ¢ piu complicata di quella con
il modello regressivo lineare, ma rimane comunque molto soddisfacente dal punto di
vista computazionale.

In sintesi, la regressione stocastica risulta essere un metodo valido per il trattamento
dei dati mancanti grazie alle sue proprieta statistiche di qualita.

Altri Modelli di Regressione Parametrica

Oltre ai metodi parametrici appena esposti esistono numerosi altri modelli di re-
gressione parametrica che vengono utilizzati solitamente per tipi di variabile o casi
applicativi specifici. Presentiamo nel seguito una panoramica non esaustiva dei
modelli che sono impiegati in base a ciascuna particolare situazione.

Per le variabili di conteggio si utilizzano i seguenti modelli:
e Modello Logistico Multinomiale Ordinato
e Modello di Poisson

e Modello Binomiale Negativo
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Questi modelli tengono in considerazione il fatto che le variabili di conteggio assu-
mono valori discreti non negativi. L’approccio che si adotta puo essere quello di
trattare la variabile di conteggio come una variabile qualitativa ordinale e utilizzare
quindi un modello lineare generalizzato (il primo modello nella lista).
Alternativamente il secondo e il terzo modello elencato possono essere implemen-
tati nella loro forma base o nella versione che tiene conto dell’inflazione degli zeri.
In particolare, il modello basato su una distribuzione binomiale negativa risulta
particolarmente flessibile e adatto a gestire i casi di sovradispersione dei dati non
uguagliando il valore della varianza alla media del modello come nel caso della
distribuzione di Poisson.

Per i dati semi-continui, dove si osserva un’elevata concentrazione di valori in
un punto (solitamente lo zero) e una distribuzione continua nei valori restanti, si
procede con una procedura a due fasi. In primo luogo si determina se il valore da
imputare sia uno zero, e successivamente, nel caso non lo sia, si estrae un valore
per la parte continua. Spesso per la parte discreta si impiega un modello logistico,
mentre per la parte continua un modello normale dopo un’opportuna trasformazione.

Un’altro particolare tipo di situazione si presenta quando i dati sono censurati
o troncati. Per queste casistiche si ricorre spesso ad analisi di sopravvivenza che
esaminano attentamente il problema in esame. Per i dati censurati due tra i metodi
piu diffusi per trattare i dati mancanti sono il Modello del Set di Rischio e il Modello
di Kaplan-Meier

Come si ¢ visto la varieta dei casi particolari puo essere molto diversificata. Spesso
invece di ricorrere a modelli parametrici si preferisce semplificare il processo di
imputazione tramite metodi di matching che verranno esposti nella sezione dedicata.

2.3.5 Metodi di Regressione Non-Parametrica

I metodi non-parametrici trovano frequentemente spazio nell’imputazione dei dati
mancanti. Molti dataset contengono infatti delle relazioni tra variabili di tipo non
lineare e complesse strutture di interazione che non sono facili da cogliere con dei
modelli parametrici.

Il grande vantaggio dei metodi non-parametrici e la loro flessibilita nell’adattarsi a
relazioni molto diverse tra loro. I modelli applicati sono il piu delle volte basati su
criteri di vicinanza o sugli alberi decisionali e possono essere impiegati sia in contesti
quantitativi che qualitativi.

Il k-nearest neighbours (KNN) fa uso di una determinata metrica di distanza per
associare, e quindi imputare, i dati mancanti con il piu vicino tra i k gruppi di
dati. Solitamente il KNN si applica ai dati standardizzati ed ¢ efficiente a livello
computazionale con tutti i tipi di dati.

Tra i metodi basati sugli alberi di regressione o di classificazione (CART) spicca in
particolare ’albero decisionale semplice e il modello Random Forest.

E’ importante non confondere I'imputazione dei dati mancanti tramite i metodi
basati sugli alberi con ’applicazione dei corrispondenti modelli sui dati disponibili.
Per quest’ultima situazione, i modelli possono funzionare ignorando i soli valori
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mancanti o applicando degli aggiustamenti appositi (come ad esempio l'uso di
categorie dedicate o di split surrogati). Questi metodi non vengono pero trattati in
questa sede. I veri e propri modelli per dati mancanti che sono stati citati verranno
meglio trattati nel capitolo relativo ai modelli. Risulta difatti facile riadattare i
modelli di regressione non parametrici al trattamento dei dati mancanti.

2.3.6 Metodi Hot Deck

I metodi di imputazione "Hot Deck", nelle loro forme piu semplici, erano spesso
utilizzati nelle analisi statistiche.

La loro caratteristica contraddistintiva consiste nell’imputare i valori mancanti di
un’unita tramite I'appoggio ad un’unita simile secondo le caratteristiche osservate.
Il termine "hot deck" faceva riferimento all’archiviazione dei dati su schede perforate
e indica che i donatori di informazioni, ovvero le unita da cui sono prese le impu-
tazioni, provengono dallo stesso set di dati dei destinatari (le unita che ricevono
le imputazioni). La lista di unita era "hot" in quanto era in corso di elaborazione.
Questi metodi sono contrapposti ai metodi di tipo "Cold Deck", dove i donatori di
informazioni vengono presi da set di dati esterni al dataset di riferimento.

Una distinzione che viene fatta in alcuni studi ¢ quella tra metodi hot deck determi-
nistici, in cui ’associazione tra donatore e destinatario ¢ univoca e basata su una
particolare metrica (in questo senso il KNN puo essere visto anche come metodo hot
deck), e metodi hot deck aleatori, dove il donatore effettivo & estratto in maniera
casuale da un insieme di potenziali donatori.

LOCF e BOCF

Il Last Observation Carried Forward (LOCF) e il Baseline Observation Carried
Forward (BOCF) sono forme elementari di metodi hot deck deterministici.

Il loro utilizzo si rivolge principalmente ai dati longitudinali o di tipo caso-controllo.
Sostanzialmente, quando mancano piu valori in successione, il metodo cerca 1'ultimo
valore osservato nel caso della LOCF o il valore considerato di base in condizioni
normali per il BOCF.

Per i1 LOCF le unita vengono quindi dapprima ordinate secondo uno specifica
variabile rilevante (che puo essere ad esempio il tempo), o set di variabili rilevanti, e
successivamente si associano i valori mancanti delle unita con quella immediatamente
precedente che presenta i valori necessari all’imputazione.

L’uso del BOCF avviene, ad esempio, in uno studio sul dolore cronico in cui, quando
un paziente si ritira dal trattamento, puo essere ragionevole supporre che il dolore
torni al livello di base e che il paziente, a lungo termine, non ne tragga beneficio.
Analizzando le proprieta statistiche, & stato dimostrato che questi sono metodi
conservativi e si puo osservare una distorsione delle stime in entrambe le direzioni
anche in presenza di MCAR. Per tali motivi il LOCF e il BOCF non vengono piu
impiegati come approccio primario per la gestione dei dati mancanti, a meno che le
ipotesi su cui si basano non siano scientificamente giustificate.

Nel corso del tempo sono stati proposti metodi alternativi volti ad aggiustare le
limitazioni del LOCF o del BOCF. Ad esempio, il Last Rank Carried Forward
(LRCF) ¢ una versione migliorata e non-parametrica del LOCF basata sui ranghi.
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Nonostante cio, tali metodi risultano molto settoriali e meno efficienti rispetto ai
principali metodi di imputazione.

Predictive Mean Matching

Il Predictive Mean Matching calcola il valore previsto della variabile con valore
mancante in base ad un modello di imputazione specificato.

Per ogni valore mancante, il metodo forma un piccolo insieme di donatori potenziali
a partire da tutti i casi completi che hanno valori piu vicini al valore da prevedere
per il dato mancante. La vicinanza tra le osservazioni € espressa tramite un preciso
criterio di vicinanza. Sono possibili diverse metriche per definire la distanza tra i
casi. Il valore previsto deve rappresentare un riassunto di un numero di informazioni
rilevanti che mettono in relazione le variabili con quella da imputare. Una volta
definita la metrica, un donatore viene estratto aleatoriamente tra i candidati e
il valore osservato del donatore servira per imputare quello mancante. L’ipotesi
fondamentale ¢ che la distribuzione del valore mancante per i donatori potenziali sia
la stessa rispetto a quella dei dati osservati.

Sia Z; il valore riassuntivo previsto dal potenziale donatore i-esimo, con ¢ = 1,...,ng
e &; il valore riassuntivo previsto dall’osservazione con valori mancanti j-esimo, con
7 =1,...,n1, allora i possibili metodi per estrarre un donatore consistono in:

* Selezionare come donatore effettivo il candidato i-esimo con distanza | ; — Z; |
minima. Questo metodo ¢ deterministico e non ottimale.

o Fissare un valore soglia 1 ed eleggere come donatori potenziali le unita con
| £; — Z; |< n. Dopodiché viene estratto casualmente un donatore effettivo tra
i candidati e si prendono i suoi valori come riferimento per 'imputazione.

o Selezionare un numero fissato di donatori potenziali d (in genere 3, 5 0 10) con
distanze | #; — ; | minime ed estrarre casualmente un donatore effettivo.

e Selezionare un donatore effettivo in base a delle probabilita che dipendono in
modo proporzionale da | &; — Z; |.

Tra i metodi elencati, si preferisce di norma per semplicita impostare il numero di
donatori potenziali. Il numero da determinare d puo influenzare significativamente i
risultati in base alla numerosita del campione dei dati. Generalmente un numero
basso di donatori d comporta un maggior numero di duplicati. Invece un numero
elevato allevia il problema dei duplicati, ma introduce una distorsione dovuta
alla perdita della qualita delle associazioni. E’ consigliabile aumentare il valore d
proporzionatamente alla numerosita campionaria per raggiungere risultati inferenziali
migliori. E’ anche possibile utilizzare un metodo che permette di impostare il numero
di donatori potenziali in modo adattivo in base ai dati osservati. Si rimanda al
lavoro di Schenker e Taylor del 1996 per ulteriori dettagli.

Il predictive mean matching risulta essere particolarmente versatile e robusto rispetto
alle trasformazioni delle variabili. Il metodo puo essere utilizzato per tutti i tipi
di varibili, ma possiede proprieta statistiche migliori quando si vanno a trattare
variabili quantitative continue e discrete. Le imputazioni si basano su valori osservati
e sono, di conseguenza, piu realistiche rispetto a valori fuori range. Per costruzione,
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le imputazioni al di fuori dell’intervallo dei dati osservati non si verificano, evitando
cosl imputazioni prive di significato.

I1 modello sottostante ¢ implicito, il che significa che non € necessario definire un
modello esplicito per la distribuzione dei valori mancanti. Per questo motivo, il
Predictive Mean Matching risente meno dell’errata specificazione di un modello
rispetto alla maggior parte dei metodi di imputazione.

2.4 Imputazione Multipla

Fino ad ora e stato dato implicitamente per scontato di trovarsi in un contesto di
imputazione singola. L’imputazione singola si ha infatti quando ’assegnazione viene
applicata una ed una sola volta, indipendentemente dal fatto che il metodo sia di
tipo deterministico o aleatorio.

L’insieme dei metodi basati sull’imputazione multipla ha il compito di fornire piu
stime dei valori mancanti e di combinarli tra di esse. Come nei casi precedentemente
descritti, un’assunzione importante ¢ l'ignorabilita del meccanismo dei dati mancanti,
anche se si possono ottenere buoni risultati in presenza di MNAR.

L’approccio sottostante & quello bayesiano ed essenzialmente fornisce una soluzione
naturale per derivare metodi di stima dei parametri tali da prendere in considera-
zione molteplici fonti di incertezza. Nel contesto dei dati incompleti, ¢ auspicabile
incorporare all’inferenza un’incertezza aggiuntiva per la mancanza di alcuni dati.
Distinguendo dal parametro 0 utilizzato per la verosimiglianza, si indica con g un
parametro d’interesse nel caso bayesiano. Poiché gli unici dati osservati sono X
e R, un’analisi bayesiana per un parametro d’interesse 3 richiede il calcolo della
distribuzione a posteriori P(f|, R).

In linea di principio, si potrebbe sempre eseguire un’analisi bayesiana diretta per
produrre la distribuzione a posteriori, ma in pratica cio potrebbe richiedere dei pro-
cedimenti complessi. Tuttavia, una semplice applicazione standard della probabilita
condizionata mostra che la distribuzione a posteriori puo essere espressa in modo da
separare il problema dei dati mancanti dal modello di analisi dei dati di interesse:

P(/B‘XOSSaR) = /P<ﬁ‘X0857Xmis)P(Xmis|X0587R)deis (29)

Questo integrale deve essere considerato come una somma nel caso di X,,;s discreti.
Tale rappresentazione si basa sul fatto che I'integrale rappresenta la distribuzione a
posteriori per 8 dato un set di dati completo. L’intuizione chiave dell’imputazione
multipla consiste nel vedere se si possa trovare un modo per generare o imputare un
campione di m valori Xfm)s, con k = 1,...,m, dalla distribuzione predittiva per i dati
mancanti, cioé dalla distribuzione P(X,,s|Xoss, R).

In tal caso la distribuzione a posteriori puo essere approssimata tramite la media
della distribuzione a posteriori dei dati completi valutata per ciascuno dei valori

imputati X,,;s:

m

1 (k)
XOSS) - Xosng 21
PO Xawes B) = 030 P9 Ko X120 (2.10)

Sotto l'ipotesi di ignorabilita, il valore atteso del parametro d’interesse 3 si puod



2.4 Imputazione Multipla 19

ottenere applicando le regole di Rubin dei valori attesi iterati e si esprime come:

E(B|Xoss, R) = E(E(B|Xoss, Xmis)| Xoss, It) (2.11)

mentre la varianza di § é:

Var(ﬁ‘Xoss; R) :E(VGT<B‘X0857 Xmis)‘Xoss; R)

2.12
+ Var(E(B’XossaXmis)|Xoss;R) ( )

Queste quantita possono essere stimate a partire dai dati imputati approssimando i
relativi integrali. Si ottiene cosi il valore atteso di § approssimato:

1 & Py
B3 Xoss 1) = 350 = (2.13)
e quello della varianza approssimata:
m A
Z vk

:V+B:V"“S

1

14 XOSS;R (k) _ pmisy2
ar(f| Z(ﬁ - B™) (2.14)

Sinota che B = —1+ 2™ (B%) — f™is)2 & una stima della varianza tra le imputazioni

del parametro di interesse 3, dove B(k) ¢ la stima del parametro ottenuta dal k-esimo
set di dati completo e ™% ¢ la stima del valore atteso approssimato dei parametri.

In sintesi, queste quantita offrono valide approssimazioni per i primi due momenti
della distribuzione a posteriori per valori grandi di m. Per piccoli valori di m la
formula della varianza deve includere un termine aggiuntivo, proporzionale a %, per
riflettere l'incertezza nel valore di " come stima della vera media a posteriori.
Questo porta alla stessa espressione di cui sopra per la media a posteriori, mentre
come approssimazione per la varianza a posteriori si ottiene:

N 1
Vs — 4 (1 + ) B (2.15)
m

Date queste approssimazioni a posteriori dei primi due momenti, si possono ottenere
intervalli di credibilita e test statistici assumendo che (57 — 3)/vV/V™is segua una
distribuzione normale standard, per un numero elevato di imputazioni m, o una
distribuzione ¢ di Student per un numero di imputazioni qualsiasi.

Ad esempio, per m grande, si ottiene il seguente intervallo di credibilita di livello

(1 — «) per 5:
IC1_o(B) = B™ £ 2o\ Vi (2.16)

con z1_,, che rappresenta il quantile di livello (1 — «) di una distribuzione normale
standard.

Andiamo ora ad offrire una panoramica sommaria dei passaggi che vanno a comporre
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il procedimento per 'ottenimento di imputazioni multiple:

1. Imputazione: si generano un numero m di copie del dataset incompleto e si
utilizza una procedura appropriata comune per imputare i valori mancanti in ciascu-
na di queste copie. Poiché non si conoscono i veri valori mancanti, i valori imputati
in ogni copia possono essere in generale diversi I'uno dall’altro.

2. Analisi: Per ogni copia imputata, si esegue, applicando i relativi modelli, I’analisi
standard che sarebbe stata eseguita in assenza di valori mancanti e si memorizzano le
stime dei parametri di interesse insieme ai loro errori standard stimati o alla matrice
di varianze e covarianze. La stima dei parametri ottenuta dal k-esimo set di dati
completo, con k =1, ..., m, € indicata con B(k) e la sua varianza stimata come V®).

3. Pooling: si mettono in comune i risultati degli m dataset imputati attraver-
so le regole di Rubin. In primo luogo si ottiene una stima combinata dei parametri,
come ad esempio la media delle m stime singole, denotata ciascuna con Bmis . Poj
si calcola ’errore standard per questa stima come radice quadrata della seguente
varianza combinata V™. Infine I'inferenza a imputazione multipla procede nel
modo consueto a partire da questi risultati, formando statistiche test e intervalli di
credibilita come sopra descritto.

2.4.1 Strategie per 'Imputazione Multipla

Per applicare la tecnica dell’imputazione multipla esistono numerose diverse strategie.
In genere non esiste una strategia che risulti assolutamente migliore delle altre.
Un aspetto fondamentale rimane il bilanciamento tra proprieta statistiche e costo
computazionale di ciascun metodo. Si vogliono quindi qui esplorare tre fra le piu
diffuse ed efficienti strategie esistenti.

Data Augmentation

L’idea generale dell’imputazione attraverso la Data Augmentation, o incremento dei
dati, consiste nell’utilizzare simulazioni Markov Chain Monte Carlo (MCMC) per
estrarre imputazioni casuali da una distribuzione multivariata a posteriori. L’estra-
zione dei valori direttamente dalla distribuzione multivariata & tuttavia difficile a
causa della mancanza di dati.

Invece di fare riferimento direttamente alla distribuzione, il processo puo essere
semplificato. Aggiornando la distribuzione dopo ogni estrazione e generando una
sequenza, o una catena, di queste imputazioni, ¢ possibile infatti approssimare la
distribuzione multivariata effettiva e utilizzarla per ’estrazione delle imputazioni.
In sostanza, questa procedura prevede di specificare innanzitutto una distribuzione
multivariata che si presume descriva accuratamente i dati e un insieme di parametri
iniziali 5(?). Solitamente viene utilizzata una distribuzione normale multivariata.

Successivamente i dati vengono aggiornati in due step di estrazione:

1. Imputation Step: XY(ZS ~ P(Xmis|Xoss,/j’(t—1))
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2. Posterior Step: S®) ~ P(B[X(t) Xoss)

mis?
dove X,;s sono i dati effettivamente mancanti, ngs sono i dati imputati, o in-
crementati, t-esimi per X, ;s € 8 ®) sono i parametri della distribuzione estratti ¢-esimi.

Questi step sono ripetuti fino alla convergenza della distribuzione e, conseguen-
temente, i dati mancanti vengono imputati per formare il dataset completo. Questa
procedura viene applicata m volte al fine di generare m diversi dataset completi.
Affinché le imputazioni siano indipendenti, ¢ necessario effettuare un adeguato nume-
ro di iterazioni per ogni imputazione cosi da garantire che la dipendenza temporale
della catena di Markov sia eliminata.

La Data Augmentation ha il vantaggio di imputare i dati in maniera aleatoria dalla
corretta distribuzione approssimata dei valori mancanti. D’altra parte non esiste
un criterio di convercenza per la catena di Markov, forzando l'algoritmo ad un
numero arbitrario di iterazioni. Inoltre, € necessario esplicitare una distribuzione
multivariata per i dati, il che puo non sempre risultare immediato, e un valore
iniziale per il parametro (). Per quest’ultimo solitamente si utilizza un algoritmo
di pre-elaborazione di tipo Expectation-Maximization.

Concludendo, questa strategia di imputazione risulta avere delle ottime proprieta,
ma richiede delle assunzioni distributive forti e un costo computazionale elevato.

Specificazione Completamente Condizionale

La Specificazione Completamente Condizionale (Fully Conditional Specification) &
un metodo alternativo alla Data Augmentation che non richiede ’esplicitazione di
una distribuzione multivariata dei dati.

Questo metodo elabora invece la distribuzione congiunta dei dati implicitamente
attraverso un insieme di distribuzioni condizionate in cui ogni singola variabile e
condizionata a tutte le altre. Cio consente di specificare distribuzioni condizionate
diverse per ogni variabile e, di conseguenza, significa che & possibile specificare
distribuzioni appropriate per ogni tipo di dati.

La versione piu diffusa dell’algoritmo di base & I'imputazione multipla attraverso
equazioni concatenate (MICE), ovvero un metodo MCMC per imputare i dati attra-
verso le distribuzioni condizionate di tutte le variabili.

Per molti versi MICE assomiglia alla Data Augmentation, tranne per il fatto che
effettua estrazioni solo per una variabile alla volta, condizionata alle altre, e ripete
la procedura per tutte le variabili in gioco.

In particolare, si parte dall’imputazione per una variabile j-esima dei valori X J(-O) e
si procede con i seguenti step:

1. Estrazione dei Parametri: BJ(-t) ~ P(Bj(t)|Xj‘?53, X'(_t]))
: ; Loy (® is 5t . 30
2. Estrazione dei Valori: X ~ P(X7"°| XL, 3;")

dove X7°% sono 1 dati osservati per la j-esima variabile, X" sono i dati effet-
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(_t)~ sono i dati completi a seguito

tivamente mancanti per la variabile j-esima e X7

dell’imputazione a meno della j-esima variabile.

Questo algoritmo mantiene le stesse proprieta della Data Augmentation e non
necessita della specificazione esplicita della distribuzione multivariata. Il costo com-
putazionale rimane in ogni caso elevato, ma, nonostante tutto, si dimostra essere
uno degli algoritmi piu efficienti per I'imputazione multipla dei dati mancanti.

Ricampionamento Bootstrap

Il metodo di ricampionamento di tipo Bootstrap viene spesso implementato a se-
guito dell’algoritmo Expectation-Maximization (EM), il quale, a differenza della
Data Augmentation, risulta essere un passaggio praticamente obbligatorio al fine di
mantenere delle buone proprieta statistiche.

L’algoritmo EM e stato sviluppato come metodo iterativo per calcolare le stime di
massima verosimiglianza per i parametri in distribuzioni in cui tali parametri non
potevano essere stimati direttamente a causa dei dati mancanti. Esso ha lo scopo di
massimizzare la verosimiglianza per il parametro (.

La convergenza di tale algoritmo ¢ deterministica, rappresentando quindi un notevole
vantaggio rispetto ad altre strategie di imputazione multipla.

L’algoritmo si avvia con la stima iniziale dei parametri 6 () tramite Listwise Deletion
e prosegue con i seguenti step:

1. Expectation Step: imputazione di X® come X® = E(Xmis| Xosss B(t_l))

2. Maximization Step: stima di S® massimizzando il valore atteso della log-
verosimiglianza del parametro, ovvero G(3|X®) = E(logL(8|X®))

Basandosi su una procedura deterministica, quest’algoritmo non presenterebbe
variabilita nell’imputazione multipla dei dati mancanti. Per questo motivo viene
introdotto il processo di ricampionamento bootstrap.

Inizialmente viene infatti estratto un campione con sostituzione dai dati osservati,
dopodiché, applicando nuovamente 1’algoritmo EM, si introduce un fattore di incer-
tezza alle stime che viene poi utilizzato per generare il dataset completo tramite
imputazione. Chiaramente questa procedura viene ripetuta m volte.

I risultati ottenuti con il Ricampionamento Bootstrap sono in generale leggermen-
te meno soddisfacenti rispetto ai metodi precedenti; d’altra parte, offre un costo
computazionale decisamente ridotto.

2.4.2 Numero di Imputazioni

Uno dei vantaggi dell’imputazione multipla ¢ che pud produrre stime efficienti con
intervalli di credibilita corretti con un basso numero di set di dati imputati.

Un suggerimento ¢ quello di utilizzare un numero di imputazioni m tra 3 e 5 per
quantita moderate di dati mancanti. Spesso numerosi studi portano invece ad
indicare un numero di imputazioni consigliato piu elevato, compreso tra 20 e 100.
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Vogliamo ora offrire un possibile approccio per la scelta del numero di imputazioni.
Per iniziare si definisce una quantita di interesse () che si potrebbe calcolare se
osservassimo l’'intera popolazione. Esempi di quantita d’interesse sono la media, la
varianza o i coefficienti di regressione della popolazione.

In linea teorica si potrebbe calcolare @) solo se i dati della popolazione fossero
completamente noti. L’obiettivo dell’imputazione multipla ¢ quello di trovare una
stima Q non distorta. Con il termine non distorsione, o correttezza, s’intende che la

A

media di @) su tutti i possibili campioni X della popolazione sia uguale a Q).

In altri termini, significa che:
EQY)=Q (2.17)

Nel caso dell’'imputazione multipla, supponendo che Qk sia la k-esima stima di @,
con k = (1,...,m), allora la stima combinata di @ é:

Q=

1
m

m A
S0y (2.18)
k=1
Definiamo poi la varianza totale (di imputazione) di Q come:
- 1
T:U+(1+)B (2.19)
m

dove:

o« U = % Dy Ui ¢ la media delle varianze Uy, dei dati completi, ovvero la
varianza relativa al fatto che si prenda in considerazione un campione aleatorio
piuttosto che osservare l'intera popolazione; questa e la misura statistica
convenzionale di variabilita.

e B = ﬁ ST (Qr — Q)(Qr — Q)T é la stima standard non distorta della
varianza tra le m stime dei dati completi, in altre parole ¢ la varianza aggiuntiva
causata dalla presenza di valori mancanti nel campione.

. % é la varianza aggiuntiva della simulazione causata dal fatto che () stesso ¢
stimato per un numero finito di imputazioni m.

Un elemento chiave dell’imputazione multipla e la presenza dell’errore di simulazione
per Q e T. Si pud dimostrare che un numero sempre piti elevato di imputazioni ci
porterebbe sempre piu vicini all’eliminazione dell’errore di simulazione di T'.

In altri termini, impostando m = oo si ha che T, < T},. Le varianze totali sono,
inoltre, legate dalla relazione:

T, = (1 n 70) T (2.20)
m
dove v € la vera frazione di dati mancanti della popolazione.

Questa quantita € pari alla frazione attesa di osservazioni mancanti se X € una



24 2. Dati Mancanti

singola variabile.

Ad esempio, per 79 = 0,2 (una sola variabile con il 20% di valori mancanti) e m =5
si ha che la varianza calcolata ¢ T,, = 1 + % = 1,04, ovvero risulta piu grande
del 4% rispetto alla varianza ideale T,,. L’intervallo di confidenza corrispondente
risulterebbe /1,04 = 1,02, vale a dire il 2% pit ampio rispetto all’ideale.
Aumentando il numero di imputazioni m a 10 o a 20, si osserverebbe un intervallo di
confidenza rispettivamente del 1% e del 0,5% rispetto all’ideale. Un incremento del
numero di imputazioni non porterebbe quindi ad un grande miglioramento in termini
di errore di simulazione, bensi ad un costo computazionale decisamente maggiore.
Un criterio di selezione di m potrebbe quindi basarsi sul raggiungimento di una
prefissata ampiezza dell’intervallo di confidenza.

In letteratura, esistono altri approcci per la scelta del numero di imputazioni che si
basano per lo piu sugli intervalli di confidenza, sulla potenza dei test statistici e, in
generale, su tutte le quantita che fanno riferimento ad m.

2.5 Selezione del Metodo di Imputazione

Confrontare i vari metodi di imputazione puo risultare un problema a livello teorico
non indifferente. Non e infatti possibile conoscere la controparte reale dei valori
che vengono imputati. Si potrebbe pensare che un metodo di selezione possa essere
basato sulle classiche misure di accuratezza indicate solitamente per valutare i
modelli previsivi. I metodi che verrebbero selezionati non risulterebbero corretti in
quanto una maggior capacita previsiva di un metodo non corrisponde spesso ad un
miglior approccio per imputare i dati mancanti.

Metriche come la radice dell’errore quadratico medio (RMSE), I’errore medio assoluto
(MAE) o l'errore medio assoluto percentuale (MAPE) tenderebbero, infatti, a
favorire a prescindere degli specifici metodi di imputazione, non tenendo conto in
maniera esaustiva delle loro proprieta. In particolare 'RMSE predilige metodi basati
sulllimputazione della media condizionata, ’'MAE favorisce i metodi che imputano
tramite la mediana condizionata e 'MAPE quelli che imputano sfruttando la moda
condizionata.

Un esempio si pud avere quando si va a confrontare 'imputazione attraverso il
modello di regressione lineare con I'imputazione attraverso il modello di regressione
stocastica. In questo caso, le metriche tradizionali indicheranno molto probabilmente
la regressione lineare come migliore metodo di imputazione nonostante presenti
proprieta statistiche peggiori.

Una proprieta desiderabile per i metodi di imputazione é la loro capacita di preservare
le distribuzioni congiunte e marginali dei dati. A tal fine si introduce un criterio di
selezione del metodo di imputazione piu oggettivo e statisticamente piu consistente
che prende il nome di Imputation Score.

Imputation Score

11 criterio di selezione basato sugli Imputation Scores (o I-Scores) fa riferimento alle
medie condizionate osservate dei dati. L’I-Score & un criterio di selezione ideale per
i metodi di imputazione quando:
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e l'obiettivo dell’imputazione e quello di riprodurre fedelmente la vera distribu-
zione dei dati;

e non e possibile avere accesso ai dati completi;

e non si vogliono mascherare artificialmente le osservazioni durante la fase di
valutazione come avviene per i criteri di selezione classici.

Per superare la difficolta nel poter osservare i soli dati incompleti, I'I-Score fa utilizzo
delle proiezioni geometriche casuali sullo spazio delle variabili per ridurre la dimen-
sionalita dei dati. Questo criterio ¢ applicabile soltanto a dati quantitativi discreti o
continui. Per questo risulta necessario pre-codificare i dati in modo adeguato.

Lo score piu elevato viene assegnato al metodo di imputazione che meglio riproduce
la distribuzione condizionata dei dati osservati. E’ stato empiricamente dimostrato
che con i dati veri si otterrebbe generalmente lo score massimo. Di conseguenza, il
metodo di imputazione che propone dei valori piu vicini alla controparte reale sara
catalogato come il migliore.

La correttezza di questa procedura ¢ dimostrata sotto I'ipotesi di MCAR, ma anche
nel caso di MAR con assunzioni leggermente piu restrittive.

L’I-Score teorico puo essere stimato nella sua versione principale come rapporto di
densita, il quale prende il nome di Density Ratio I-Score.

Gli I-Scores si rifanno al concetto di Proper Scores, ma con le dovute differen-
ze. Sia (2, A,P) lo spazio di probabilita sottostante su cui si denotano tutti gli
elementi aleatori necessari all’analisi e P una collezione di misure di probabilita su
R™ dominate da alcune misure o-finite u.

Si definisce con P la distribuzione osservata dei dati X con valori mancanti e, in
maniera analoga, P* € P si riferisce alla vera distribuzione di X indicata con X*.
Similmente si denota con PM, con supporto M, la distribuzione del vettore aleatorio
di non-risposta M in {0, 1}" (i suoi valori sono opposti alla matrice indicatrice di
risposta R e m rappresenta una sua realizzazione) per X.

Inoltre, per un sottoinsieme A C {1,...,n} e per un vettore aleatorio X, o una osser-
vazione 2 € R", si indica con X4 (o x4) la proiezione definita su quel sottoinsieme
di indici.

Si ha allora che (P, P*) forma una tupla in cui P deriva da P* e PM e Hp C P &
I'insieme delle distribuzioni di imputazione compatibili con P, ovvero:

Hp={H € P: h(o(x,m)|M =m) =p(o(x,m)|M =m),V:me M} (2.21)

dove o(x,m) ¢ la controparte osservata di = corrispondente alla realizzazione m,
mentre A(-) e p(-) sono le distribuzioni di H e P.

Chiaramente si ha che P* € Hp, di conseguenza, la vera distribuzione P* puo
essere vista come un’imputazione compatibile.

La funzione Sya(-, P) : R™ — R, definita come Sya(H, P) = Eyu(Snva(X, P)) &
il valore atteso di X ~ H. Se tale funzione rispetta la condizione:

Sya(H, P) < Sya(P*, P) (2.22)
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per qualsiasi distribuzione di imputazione H € Hp, allora prende il nome di I-Score.

Il metodo di imputazione che restituira il valore di I-Score piu elevato, risulte-
ra il metodo migliore e quello da selezionare.

La stima degli I-Scores attraverso Density Ratios (o rapporti di densita) permette di
aggirare il problema della mancata osservazione di P* in maniera efficiente utilizzando
appunto delle proiezioni aleatorie su uno spazio delle variabili di dimensione ridotta.
Ogni proiezione ¢ scelta aleatoriamente secondo una determinata distribuzione di
probabilita K con supporto A.

Dato allora un set di indici di proiezione A € A e un pattern di dati mancanti
My ~ Pjﬂ/f sulla proiezione corrispondente X4 ~ H)y,, si definisce la funzione:

pa(Xa|My = 0))
Py (Xa)

Sna(Xa, Pa|Ma) = log < (2.23)

dove pa(X4|M4 = 0) & la densita della parte completamente osservata di P proiet-
tata su A e has, (X4) € la distribuzione di un’imputazione H, dato il pattern di dati
mancanti m4 sulla proiezione X 4.

Il Density Ratio I-Score della distribuzione delle imputazioni H é:
S?VA(H7 P) = EANK,MANP%,XANHMA (Sna(Xa, Pa|Ma)) (2.24)

Si rimanda all’articolo in bibliografia di Jeffrey Naf e Meta-Lina Spohn del 2021 per
una trattazione teorica completa.
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Capitolo 3

Modelli Previsivi

Per trattare la componente spaziale nei problemi relativi al mercato immobiliare, &
possibile utilizzare dei modelli previsivi di regressione che non possiedono esplici-
tamente all’interno della formulazione dei parametri spaziali. Si puo invece tener
conto della spazialita definendo delle nuove variabili associate ai diversi sottomercati
spaziali di una determinata area.

In questo capitolo, si vuole quindi stabilire la natura delle variabili spaziali e presen-
tare la teoria relativa ai modelli statistici principalmente utilizzati per la previsione
dei prezzi. Infine, si esporra una strategia per selezionare il modello basata su degli
indicatori di accuratezza delle previsioni.

3.1 Variabili Spaziali

Un valido approccio per trattare gli eventuali effetti spaziali in un insi eme di
dati tramite modelli previsivi non spaziali consiste nell’introdurre variabili spaziali
che esprimono la collocazione geografica delle unita statistiche. Nel nostro caso le
variabili indicheranno se un’unita e situata in una determinata regione all’interno
della citta, ovvero andranno a definire dei sottomercati spaziali.

Ispirandoci al lavoro di Bor-Ming Hsieh del 2012, esponiamo tre metodi basati
sull’identificazione di alcuni tipi di sottomercato spaziale dei prezzi delle abitazioni.
Il primo metodo prende in considerazione solo I'indirizzo dell’immobile, mentre gli
altri due metodi esaminano anche le caratteristiche dell’abitazione.

I sottomercati spaziali hanno il compito di determinare delle zone secondo le quali
esistono degli immobili i cui prezzi sono in relazione tra loro. Avranno quindi
in questo senso il ruolo di variabili esplicative all’interno dei modelli tradizionali
applicati.

Aree Amministrative

Una semplice tecnica che puo essere utilizzata per tenere in considerazione gli effetti
spaziali si serve della conoscenza relativa all’area amministrativa di appartenenza
dell’immobile. Una differente collocazione amministrativa di un’abitazione implica
molto spesso un diverso valore di vendita sul mercato. Solitamente nelle zone piu
centrali di una cittd hanno sede infatti attivita sociali ed economiche maggiori
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e, conseguentemente, i prezzi di transazione mantengono un livello piu elevato.
Al contrario, le aree periferiche saranno meno ambite sul mercato immobiliare
determinando in genere un minore prezzo di vendita.

Nelle varie citta del mondo ci sono diversi livelli di confini amministrativi a seconda
della dimensione delle aree che si prendono come riferimento. Scegliere un corretto
livello di suddivisione territoriale risulta quindi importante al fine dell’applicazione
dei modelli. Si consiglia di selezionare un livello corrispondente ad un adeguato
potere amministrativo. Maggiore e la rilevanza dell’area amministrativa, maggiori
sono gli effetti sul mercato immobiliare. Accade spesso che in una determinata area
si fissi il prezzo al metro quadro degli immobili o che vengano stabiliti dei prezzi
soglia di riferimento da parte di coloro che possiedono la responsabilita del lotto.
Nei modelli statistici queste considerazioni si riflettono sul processo di selezione del
modello e sulla variazione probabilistica dei risultati.

Cluster Spaziali

La Cluster Analysis puo essere impiegata per selezionare e raggruppare insiemi di
immobili con caratteristiche omogenee. Gli immobili di uno stesso cluster andranno
quindi a formare un possibile sottomercato abitativo spaziale.

La variabile indicante il cluster svolgera il ruolo di predittore nei modelli statistici
che si applicheranno. Le variabili che vengono utilizzate per la costruzione dei cluster
devono essere scelte tra le esplicative ed essere rilevanti per la determinazione di un
sottomercato. Nell’articolo di riferimento originale sono state analizzate le seguenti
variabili: la superficie costruita, la superficie del lotto, ’anno di costruzione, la
larghezza della strada per accedere al lotto e la distanza dal centro citta.

Per la finalita di questa ricerca, si ritiene che alcune di queste variabili siano
ridondanti o non esaustive al fine di descrivere un determinato sottomercato. Per
questo motivo si propone un altro sistema di variabili simile al precedente. Per
descrivere le caratteristiche dell’immobile si consiglia di utilizzare la superficie
costruita, il numero di bagni, il numero di stanze e il piano d’ingresso. Queste
variabili hanno la caratteristica di essere numeriche, di conseguenza i modelli per
il clustering applicabili sono piu semplici. Osservando la differenza con le variabili
dell’articolo, si nota che la superficie del lotto sia infatti ridondante, data la presenza
della superficie costruita. Inoltre, il numero di bagni, di stanze e il piano d’ingresso
appaiono delle caratteristiche piu significative rispetto alle precedenti.

Alle variabili appena indicate, si suggerisce di aggiungere le coordinate geografiche
dell'immobile a sostituzione della distanza dal centro citta. Le coordinate servono
ad indicare l’esatta posizione dell’immobile all’interno dell’area di studio.

Alcuni dei modelli di clustering particolarmente noti per la loro efficienza sono
quelli a mistura finita con componenti Gaussiane. L’algoritmo con cui vengono
generalmente implementati € quello di tipo EM e la selezione del modello avviene
tramite il criterio di informazione Bayesiana (BIC). Si rimanda al libro di Nizar
Bouguila e Wentao Fao del 2020 per gli aspetti teorici legati ai modelli a mistura
finita con componenti Gaussiane.



3.2 Regressione Parametrica 29

Cluster LISA

Il metodo di clustering basato sull’Indicatore Locale di Associazione Spaziale (LISA)
rileva, a differenza dei precedenti, se esista una dipendenza spaziale significativa dei
prezzi degli immobili in un determinato confine.

Per definizione il LISA ¢ un qualsiasi indicatore che soddisfa le seguenti due condizioni:

e per ogni osservazione fornisce un’indicazione dell’entita del raggruppamento
spaziale con i valori misurati sulle osservazioni vicine;

e la somma dei valori dell’indicatore per tutte le osservazioni € proporzionale a
un indicatore globale di associazione spaziale.

Prenderemo in esame il LISA calcolato a partire dall’indice di Moran locale, il quale
misura l'autocorrelazione spaziale tra le osservazioni. Nel caso trattato il LISA ana-
lizza la concentrazione spaziale dei prezzi delle case in base alla posizione geografica
e ai valori assunti dalla variabile dipendente. Tratteremo piu approfonditamente gli
aspetti teorici legati all’indice di Moran e all’indicatore LISA nel capitolo successivo.
L’aspetto fondamentale € che i risultati del LISA possono essere clusterizzati e sono
utili per identificare i sottomercati spaziali dei prezzi delle abitazioni.

Le informazioni combinate consentono infatti di classificare i sottomercati spaziali
come cluster che si differenziano in base alla correlazione spaziale interna.

Si osserveranno quindi delle zone che presentano dei prezzi degli immobili elevati,
altre zone con prezzi degli immobili bassi e, infine, zone con prezzi che tendono in
una delle due direzioni senza favorirne una specifica.

3.2 Regressione Parametrica

Nella regressione parametrica i modelli sono costruiti introducendo uno o piu para-
metri di interesse. La forma dei modelli e le relative assunzioni sono completamente
specificate a priori. Prenderemo in esame dei modelli parametrici lineari e derivati.
In ambito immobiliare la regressione parametrica ¢ ampiamente impiegata per spe-
cificare dettagliatamente i singoli effetti delle esplicative sulla risposta. Inoltre,
forniscono una buona precisione anche con un numero minimo di osservazioni.

3.2.1 Modello Lineare

Il modello di regressione lineare multipla risulta essere il modello di base piu utilizzato
per molti tipi di analisi statistiche, tra cui la descrizione dei fattori che influiscono sui
prezzi. Caratteristiche fondamentali che lo contraddistinguono sono I'interpretabilita
e la facilita con cui puo essere formulato.

Il modello per la variabile risposta si presenta nella seguente forma:

p
Yi=Bo+3 8iXij+e, i=1.n (3.1)
j=1

con:

o Y, : variabile dipendente (o risposta) quantitativa continua per 1’ i-esima
osservazione, con ¢ = 1,...,n;
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o X;; : variabile indipendente (o esplicativa) j-esima, con j = 1,...,p, per I’
i-esima osservazione, con ¢ = 1, ...,n;

e (o : intercetta del modello, corrisponde al valore atteso di Y quando tutte le
variabili esplicative sono nulle;

o 3 : coefficiente angolare (o coefficiente di regressione) per la variabile esplica-
tiva Xj, con j =1,...,p;

e ¢; : errore statistico per I’ i-esima osservazione, con ¢ = 1,...,n. Si assume che
gli errori siano tra loro indipendenti ed identicamente distribuiti secondo una
distribuzione normale di media nulla e varianza costante. In altri termini, si
assume che ¢; ~ N(0,0?).

I parametri del modello sono l'intercetta By e i coefficienti di regressione f3;.
Questi ultimi sono stimati minimizzando la somma dei quadrati dei residui:

n P
i=1 j=1
di conseguenza, i parametri stimati risultano essere:
B = argmin S(3) (3.3)
B

L’approccio utilizzato prende il nome di Metodo dei Minimi Quadrati Ordinari o
Ordinary Least Squares (OLS) e i parametri stimati che ne conseguono corrispondono
alle stime di massima verosimiglianza dei parametri §; fissata la varianza a2

Gli stimatori ai minimi quadrati hanno inoltre proprieta di ottimalita garantite dal

teorema di Gauss-Markov.
Il modello di regressione lineare possiede le seguenti assunzioni:

1. Linearita: la relazione tra le variabili indipendenti e la variabile dipendente
¢ di tipo lineare nei parametri, di conseguenza, non si possono applicare delle trasfor-
mazioni sui parametri, ma soltanto delle trasformazioni sulle variabili indipendenti.

2. Normalita: la variabile dipendente segue una distribuzione normale. Questa
assunzione non e vincolante, poiché gli stimatori che si otterrebbero senza l’ipotesi
di normalita hanno buone proprieta. I risultati inferenziali (intervalli di confidenza e
verifiche di ipotesi) non possono pero essere ottenuti in maniera semplice, anche se,
tuttavia, per un numero elevato di osservazioni n gli stimatori risultano asintotica-
mente normali e restituiscono buoni risultati.

3. Omoschedasticita: la varianza della variabile dipendente ¢ costante, ovvero
Var(Y;) = 02, con i = 1,...,n. Come per la non normalita, gli stimatori dei minimi
quadrati ordinari (OLS) hanno comunque buone proprieta, ma non c’¢ soluzione al
problema relativo alle procedure inferenziali (anche con n grande). Quest’assunzione
risulta quindi maggiormente vincolante rispetto alla precedente.
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4. Indipendenza: le osservazioni della variabile dipendente sono tra loro linear-
mente indipendenti. Forme diffuse di dipendenza tra variabili sono ’autocorrelazione
temporale per le serie storiche e l’autocorrelazione spaziale per i dati spaziali.

5. Indipendenza tra Variabili Esplicative: le variabili esplicative X; sono tra loro
linearmente indipendenti. In caso di dipendenza tra esplicative si parla di collinearita
o multicollinearita.

Una procedura fondamentale per il modello regressivo lineare ¢ la diagnostica
del modello. I metodi diagnostici hanno 1’obiettivo di verificare le assunzioni del
modello eseguendo delle specifiche analisi grafiche e dei test appositi.

Le analisi vengono spesso condotte sui residui del modello di regressione, ovvero
sulle differenze tra i valori osservati e i valori stimati della risposta.

3.2.2 Modello Lineare Generalizzato

I modelli lineari generalizzati sono una famiglia di modelli che vanno ad estendere il
concetto di modello lineare. La loro caratteristica fondamentale ¢ I'appartenenza
della variabile risposta ad una specifica famiglia di dispersione esponenziale.
In termini di osservazioni sulla risposta si pud esprimere la famiglia distributiva
come segue:

b(0;)

Oiyi —
p(yilbi, ¢) = exp{y(

i (0) + c(yi,qﬁ)} ,i=1,...n (3.4)

con §; € © C R, a;(¢p) > 0.

Il parametro 6; e detto parametro naturale, mentre ¢ ¢ detto parametro di disper-
sione. Le funzioni a(-) e b(-) si riferiscono rispettivamente a 1 e 6; e contribuiscono
anch’esse alla determinazione della specifica distribuzione della risposta.

Per questa tipologia di modelli le assunzioni sottostanti sono analoghe a quelle
del modello lineare, cio nonostante risultano leggermente piu flessibili.

In particolare, vengono mantenute le ipotesi di indipendenza sia per la variabile
risposta che per le esplicative.

Le altre assunzioni possono essere cosi espresse:

1. Linearita : g(E(Y:)) = g(ui) = ni = Bo + 25—, B Xij

dove ¢(-) € una funzione liscia invertibile nota che prende il nome di funzione di
legame (o link function), mentre 7; ¢ il predittore lineare i-esimo.

L’ipotesi di linearita ricade quindi non pit sulla risposta, ma sulla funzione di legame.

2. Distribuzione : Y; = DEq(u;, a;(¥)v(u;))
La variabile dipendente segue una particolare distribuzione appartenente alla famiglia
di dispersione esponenziale come espresso dall’equazione (3.4).
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I parametri 8; del modello sono stimati attraverso i minimi quadrati pesati iterati.
L’algoritmo che svolge quest’operazione ¢ detto anche metodo di Newton-Raphson.
Gli stimatori risultanti hanno, come nel caso del modello lineare, buone proprieta
statistiche di ottimalita.

I metodi diagnostici del modello lineare generalizzato sono simili a quelli del modello
lineare con dei dovuti aggiustamenti. Analizzeremo piu a fondo questo aspetto nella
parte applicativa.

Poiché nella nostra applicazione si costruira un modello di regressione per una
variabile considerabile come quantitativa continua (il prezzo di vendita), andiamo a
presentare un modello lineare generalizzato apposito.

Nel caso in questione si suppone che la variabile risposta segua una distribuzione
Gamma del tipo Y; ~ Ga(a, \;). Questa distribuzione si pud anche esprimere in
termini di famiglia esponenziale come segue:

a—1

p(yilNi, ) = ea:p{—)\,-yi +aln )\i} %

S Y Ai,a>0 (3.5)
(a)

In particolare, risulta che il valore atteso & E(Y;) = p; = £, la varianza Var(V;) = £
il parametro naturale §; = — L = —

= DN

—ZL e il parametro di dispersione ¢ = é
I parametri « e A; sono quelli tipici di una distribuzione Gamma e rappresentano
rispettivamente il parametro di forma e di scala.

3.2.3 Modelli con Regolarizzazione

La regolarizzazione (o shrinkage) & una tecnica che ha l'obiettivo di ridurre il proble-
ma dell’overfitting di un modello.

Molto spesso accade, infatti, che il modello selezionato costruito sui dati di training
non si adatti adeguatamente ad un nuovo dataset. Questo & dovuto al fatto che si
debba trovare un bilanciamento tra la distorsione e la variabilita del modello.

Un modello non distorto che si adatta perfettamente ai dati di training avra frequen-
temente difatti delle capacita previsive ridotte sul dataset di test.

La regolarizzazione introduce in questo senso una penalita durante I’applicazione del
metodo di stima dei parametri. Questa tecnica si puo applicare ad una moltitudine
di modelli, ma faremo riferimento ai modelli lineari e lineari generalizzati.
Esistono diversi tipi di regolarizzazione. Le piu frequenti sono la Ridge e il Lasso.
Spesso si parla infatti di Regressione Ridge o Regressione Lasso. Verra inoltre
presentato un tipo di regolarizzazione che unisce il concetto di queste due procedure
che prende il nome di Elastic Net.

Passaggio fondamentale per ’applicazione dei metodi di regolarizzazione risulta la
standardizzazione delle variabili in fase di pre-processing in modo da dare a tutte le
variabili lo stesso peso. In seguito all’applicazione dei metodi di regolarizzazione si
possono successivamente ritrasformare le variabili nella loro scala originale.
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Ridge

La Regressione Ridge ¢ un metodo di regolarizzazione del modello che viene utilizzato
soprattutto per analizzare dati che soffrono di multicollinearita. Questo metodo si
basa su una metrica di tipo L2, in quanto penalizza per il quadrato del valore dei
coefficienti di regressione del modello.

Nel caso, ad esempio, del modello di regressione lineare, la funzione di costo basata
sui minimi quadrati assume la seguente forma:

SB) = (yi— > Bixij) + A>3 (3.6)
= =1

i=1
dove A ¢ la costante di restringimento che viene fissata.

Se A & nullo si ricade nel caso della regressione lineare con stime basate sul metodo
di stima OLS. Maggiore ¢ A, minore risultera la variabilita del modello a discapito
di una maggiore distorsione. Si osserva infatti che, i valori delle stime dei parametri
[ saranno piu piccoli, e quindi meno rilevanti per la determinazione della risposta,
tanto piu elevato risultera il valore della costante di restringimento.

Lasso

La Regressione Lasso si basa su una regolarizzazione di tipo L1. A differenza della
Ridge, il Lasso ha la funzione di eseguire, oltre alla regolarizzazione, anche una
selezione delle variabili esplicative.

Ner il modello di regressione lineare, la funzione di costo per il Lasso si presenta
come segue:

SB) = _(yi—>_ Bixi)+A>_ | B | (3.7)
= =1

i=1

con \ costante di restringimento fissata.

Si puo notare che la penalizzazione avviene attraverso il valore assoluto dei coefficienti
di regressione. Come nel caso della Ridge, all’aumentare di A aumenta la distorsione
e diminuisce la variabilita del modello. Per valori sufficientemente elevati di A, la
regressione Lasso iniziera a restringere i coefficienti di regressione a tal punto da
rendere quelli meno rilevanti nulli. Se il valore di A tende ad oo verra selezionato il
modello nullo privo di alcuna variabile esplicativa.

Elastic Net

L’Elastic Net & un metodo di regolarizzazione che unisce la Regressione Ridge con
la Regressione Lasso in un unico modello. Questo metodo si basa quindi sia sulla
metrica L1 che su quella L2.

Per il modello lineare, la funzione di costo é:

n P D p
SB) = (i —>_ Bixi) 2+ D | B | +X > B7 (3.8)
7=1 7j=1 7j=1

i=1
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con A1 e o costanti di restringimento fissate riferite rispettivamente alla norma L1
e a quella L2.

Spesso, per motivi di efficienza e di costo computazionale, la funzione di costo
si presenta nella seguente forma semplificata:

S(8) = Bi +a

1 J

185 1) (3.9)

1

S (yi — X Bjwij)? 1—a o
+ A(
2n 2
]: =
con A\ costante di restringimento fissata comune e « costante che regola il rapporto
tra l'influenza della norma L1 ed L2.

Si osserva che, se la costante a € pari a 0 si rientra nel caso della Regressione
Ridge, mentre se a € 1, si ha una Regressione Lasso.

L’Elastic Net risulta quindi un’evoluzione piu flessibile rispetto ai primi due metodi
di regolarizzazione e puo controllare sia la selezione delle variabili che il problema
di multicollinearita. La costante « rende, d’altra parte, il modello piti complesso e
difficile da implementare.

3.3 Regressione Non-Parametrica

Nella regressione non-parametrica la forma dei modelli non viene specificata a priori,
ma viene invece determinata in base ai dati osservati. Il termine non-parametrico
non e riferito all’assenza di parametri, ma al fatto che il numero dei parametri e
flessibile e non fissato a priori. Talvolta i parametri dei modelli non-parametrici sono
detti iperparametri. Un vantaggio rispetto alla regressione parametica ¢ data dalla
ridotta quantita di assunzioni sottostanti i modelli e dalla minore sensibilita ai valori
anomali. D’altra parte, la regressione non-parametrica pud essere poco precisa in
presenza di poche osservazioni e i risultati possono essere meno facili da interpretare.
In particolare, modelli che discuteremo sono il K-Nearest Neighbours e il MARS.

3.3.1 Modello K-Nearest Neighbours Regressivo

I k-nearest neighbours (KNN) ¢ un semplice modello non-parametrico basato sulle
distanze. Spesso il KNN viene impiegato per gestire problemi di classificazione, ma
il suo utilizzo trova spazio anche per analisi di regressione.

La distanza tra le osservazioni € la misura di similarita su cui si basa questo modello.
Esistono molteplici tipi di distanza. Quelle piu diffuse per le variabili quantitative
continue sono la Distanza Euclidea e la distanza di Mahalanobis, mentre per variabili
categoriche si usa solitamente la Distanza di Hamming.

L’algoritmo di implementazione del KNN poggia su alcuni semplici passaggi:

1. Scelta di k: si fissa un numero a priori di gruppi k£ a cui puo appartenere
ogni singola osservazione.
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2. Calcolo delle Distanze: per ogni osservazione si calcolano le distanze multi-
dimensionali basate sulle variabili esplicative rispetto a tutte le altre osservazioni
del dataset. In questo modo si vanno a formare dei vettori di distanza per ciascuna
osservazione.

3. Ordinamento: per ciascuna osservazione si ordinano i vettori delle distanze
appena calcolate in ordine crescente.

4. Selezione: da ciascun vettore si selezionano le prime k distanze.

5. Stima: si stima il valore della variabile risposta per ciascuna osservazione, calco-
lando la media (o mediana) delle risposte delle k osservazioni con distanze selezionate.

Poiché il modello KNN ¢ basato sulle distanze, ¢ preferibile standardizzare le variabili
in fase di pre-processing per evitare distorsioni dovute alla diversa scala di misura.
Nonostante questo modello sia relativamente semplice e abbia un costo computazio-
nale generalmente ridotto, spesso riesce a superare per capacita previsive molti tra i
modelli pit complessi. Questo modello puo in definitiva essere utilizzato per avere
delle stime dei prezzi di vendita in maniera rapida senza troppi compromessi.

3.3.2 Modello MARS

I1 modello Multivariato Adattivo di Regressione con Splines (MARS) puo essere
visto come un’estensione dei modelli lineari che prevede componenti di non linearita
e interazioni tra variabili.

Il modello si presenta come segue:
M
YVi=ao+ Y amBm(Xit, ..., Xip), i=1,..,n (3.10)
m=1

con aq intercetta del modello, a,, coefficiente costante dell’m-esima funzione base,
B,,, funzione di base m-esima e M numero totale di componenti.

La funzione di base puo assumere due forme particolari:

e Hinge Function : & una funzione a gradini definita come
h(zj) = max(0,z; — c) (3.11)

dove x; € una variabile esplicativa, ¢ ¢ il punto di taglio (cut point) che divide
I'intervallo di definizione in due segmenti, e o € un parametro di forma. La
hinge function ha un valore di 0 per z; < ¢ e un valore crescente per z; > c.

e Spline : € una funzione curva che puo essere del tipo

K+1

s(@) = 3 Bululay) (3.12)
k=1
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dove [ sono i coefficienti della spline, hi(x) sono le hinge functions che
descrivono i segmenti della spline e K ¢ il grado della spline, ovvero il numero
di hinge functions che la compongono. In generale, una spline puo avere piu
di due punti di taglio, ovvero piu di tre segmenti, e permette di includere
dei termini di interazione tra le variabili del modello. Il gredo massimo delle
splines determina il grado del modello.

Chiaramente il tipo di hinge function e di spline descritto rappresenta uno dei tanti
possibili modi con cui € possibile esprimerle. Quelle presentate sono infatti delle
forme molto semplici di funzione di base, ma ne esistono numerose altre volte ad
esprimere delle relazioni pit complesse.

L’algoritmo alla base del modello MARS & composto da due fasi:

1. Forward Step: a partire dal modello con sola intercetta, per ogni variabile
esplicativa, si aggiungono ripetutamente delle funzioni di base trovando ad ogni
passo quella che riduce maggiormente la radice dell’errore quadratico medio.
L’algoritmo valuta quindi tutte le possibili combinazioni di funzioni di base. Ogni
nuova combinazione di funzioni di base consiste in un termine gia presente nel mo-
dello moltiplicato per una nuova hinge function o spline. Per I’aggiunta di ciascuna
funzione di base si devono testare tutte le combinazioni possibili dei termini che la
vanno a formare. Questo processo continua finché la variazione dell’errore residuo
non e troppo piccola per continuare o fino al raggiungimento di un numero massimo
di termini. Quest’ultimo ¢ impostato a priori. Si ripete il processo per tutte le
variabili, cercando di aggiungere una nuova funzione di base per ciascuna variabile.
Per calcolare il coefficiente di ciascuna funzione di base, si applica una regressione
lineare sui termini gia noti.

La ricerca delle combinazioni della Forward Step puo essere accelerata tramite metodi
euristici per la selezione dei termini esistenti.

2. Backward Step: per evitare 'overfitting, si seleziona un modello provando
a rimuovere le funzioni di base meno efficaci. I modelli annidati vengono confrontati
utilizzando un particolare criterio di selezione. Questo passo viene detto anche fase
di Pruning del modello.

Il modello MARS risulta quindi un’evoluzione piu flessibile del modello di regres-
sione lineare che mantiene comunque un buon livello di interpretabilita e offre una
selezione automatica delle variabili del modello. Le funzioni di base vengono usate
per approssimare la relazione non lineare tra le variabili, tuttavia, il modello richiede
una procedura di selezione delle variabili rilevanti e delle loro interazioni che puo
essere computazionalmente costosa in presenza di un grande numero di esplicative.

3.4 Regressione con Alberi

I modelli basati sugli alberi possono essere utilizzati sia per la classificazione che
per la regressione (talvolta vengono indicati come CART). Fanno parte della classe
dei modelli non-parametrici, ma sono rilevanti a tal punto da essere spesso trattati
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come categoria a sé stante. Tutti questi modelli fanno riferimento alla struttura ad
albero della teoria dei grafi. L’albero & un grafo non orientato, connesso e aciclico.
In altri termini, dato un insieme di nodi ed archi di un grafo, questo risulta essere
un albero se ciascun arco non presenta alcun verso e, se presi due nodi qualsiasi,
questi sono connessi da uno ed un solo percorso.

Esistono modelli basati sugli alberi di diverse tipologie e complessita. Spesso, per
molte applicazioni, molteplici alberi vengono messi in relazione e combinati al fine
di formare modelli piu sofisticati (metodi ensemble).

3.4.1 Albero Decisionale

L’albero decisionale di regressione, noto anche come albero di regressione, ¢ il piu
semplice tra i modelli basati su una struttura ad albero.

La struttura sottostante e infatti quella di un grafo ad albero univoco in cui ogni
nodo interno e etichettato con una tra le variabili esplicative a disposizione. Gli
archi che si dipartono da un nodo indicano una selezione tra i possibili valori della
variabile esplicativa, oppure conducono ad un nodo decisionale subordinato ad
un’altra variabile. Ogni foglia dell’albero & associata ad un valore per la risposta.
Un albero viene costruito dividendo ’insieme di partenza, che costituisce il nodo
radice dell’albero, in sottoinsiemi che vanno a comporre i nodi figli successivi.

La suddivisione si basa su un insieme di regole di suddivisione. Questo processo
viene ripetuto su ogni sottoinsieme di nodi ricorsivamente (partizionamento ricorsivo)
fino a quando il sottoinsieme di un nodo ha tutti gli stessi valori della variabile
risposta, quando la suddivisione non aggiunge piu valore alle previsioni o quando si
raggiungono le condizioni per applicare un criterio di stop pre-impostato. Questo
processo e di tipo top-down in quanto parte dal nodo radice fino a giungere ai nodi
foglia.

A livello di variabili, I'insieme dei valori delle esplicative X7, ..., X}, ovvero lo spazio
dei predittori, viene diviso in K regioni distinte R non sovrapposte. Queste regioni a
livello teorico possono avere una forma qualsiasi, ma frequentemente, per semplicita di
costruzione ed interpretazione, sono rettangoli multiidimensionali. Alle osservazioni
appartenenti ad una stessa regione Rj sara associato uno stesso valore previsto,
corrispondente alla media delle variabili risposta per le osservazioni in quella regione.
Le regioni vengono scelte in modo tale da minimizzare ad ogni passo una determinata
metrica (ad esempio P'RMSE per la regressione) in maniera ricorsiva come sopra
descritto, la quale svolge il ruolo di funzione di costo. Poiché la logica applicata e
quella top-down, la divisione delle regioni viene fatta in modo da preferire un albero
migliore al passo immediatamente successivo, piuttosto che un albero migliore a
livello globale. Quest’approccio viene definito greedy.

Per evitare l'overfitting, oltre al criterio di stop, si puo svolgere il pruning (o potatura)
del modello. Per questo fine si introduce il concetto di complessita e di profondita
di un albero. La complessita di un albero decisionale & definita come il numero
di suddivisioni dell’albero, mentre la profondita massima ¢ il numero massimo
di cammini che vanno dal nodo radice alle sue foglie. Gli alberi piu semplici o
meno profondi sono infatti da preferire. Sono facili da interpretare e hanno meno
probabilita di adattarsi eccessivamente ai dati, ovvero di andare in overfitting.
Metodi di pruning semplici consistono nel limitare la complessita (o la profondita
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massima) dell’albero, oppure, si puo esaminare ogni nodo foglia dell’albero e valutare
Ieffetto che si avrebbe sulla sua rimozione utilizzando un set di test di attesa.

I nodi foglia vengono rimossi solo se viene ottenuta una riduzione della funzione di
costo complessiva sull’intero set di test. Si smette di rimuovere i nodi quando non &
possibile apportare ulteriori miglioramenti.

E possibile utilizzare metodi pitt avanzati, come il pruning della complessita dei costi
(detta anche potatura del legame pit debole), in cui viene utilizzato un parametro di
apprendimento per valutare se i nodi possano essere rimossi in base alla dimensione
dei sottoalberi.

3.4.2 Bagging e Random Forest

11 modello Random Forest & una tecnica di apprendimento supervisionato basata
sull’aggregazione di un insieme di alberi di decisione. Il suo obiettivo € quello di
migliorare la generalizzazione del modello tramite la riduzione della varianza delle
previsioni e la limitazione del fenomeno dell’overfitting, controbilanciata solo in parte
dal processo di pruning dell’albero.

Il Bagging (o aggregazione Bootstrap), una tecnica utilizzata dal Random Forest,
prevede la creazione di B campioni di dati dal dataset di partenza, ciascuno estratto
in modo aleatorio e senza ripetizione con la stessa dimensione n del dataset originale.
Su ogni campione viene addestrato un albero di decisione e le previsioni ottenute da
tutti gli alberi vengono aggregate attraverso una media, ottenendo cosi una stima
piu stabile.

Nel Random Forest, in aggiunta al Bagging, viene utilizzata la tecnica di Random
Feature Selection. Ad ogni passo della costruzione dell’albero di decisione, un sot-
toinsieme di m predittori viene selezionato in modo casuale dal set completo dei
predittori. Questa tecnica aiuta a ridurre la correlazione tra gli alberi, limitando il
rischio di sovrapposizione tra di essi.

Il parametro B viene solitamente calcolato attraverso il metodo di cross-validation
o tramite 1'out-of-bag error (OOB). Il parametro m ¢ scelto generalmente come la
radice quadrata del numero totale di predittori del dataset di partenza.
Nonostante il modello Random Forest ha una minore interpretabilita rispetto al-
I’albero decisionale, le sue capacita predittive sono decisamente maggiori, grazie
alla riduzione della varianza delle previsioni e alla limitazione dell’overfitting. In
generale, il Random Forest si dimostra particolarmente efficace in contesti di grandi
dataset con molte variabili predittive.

3.4.3 Boosting

Il Boosting prende ispirazione dal Bagging, ma vengono apportate alcune modifiche.
Anche in questa tecnica si seleziona B volte un campione aleatorio con ripetizione di
osservazioni della stessa dimensione n del dataset di partenza. A ciascun campione
si applica un albero di regressione. La grande differenza rispetto al Bagging, & che
il Boosting applica gli alberi in maniera sequenziale in modo tale che ciascuno di
essi si basi sui risultati di quello precedente. In questo senso i pesi campionari delle
osservazioni sono aggiornati ad ogni passaggio al fine di migliorare le stime e di
evitare I'indipendenza tra gli alberi.



3.4 Regressione con Alberi 39

AdaBoost

I1 pitt semplice modello ad alberi basato sul Boosting ¢ I’AdaBoost (o Adaptive
Boosting), il quale prende il nome dal corrispettivo algoritmo.

L’AdaBoost applica sequenzialmente degli alberi con un solo nodo radice e due soli
nodi foglia, detti stump e indicati con s(z), b = 1, ..., B. Di conseguenza, ad ogni

stump corrispondera una sola variabile. Inizialmente il primo stump si basa sul
(b) 1

dataset iniziale e i pesi campionari iniziali w; "’ sono tutti pari a .-, in altri termini

wz(l) = % Ogni stump successivo prende come input il campione di osservazioni
con ripetizione proveniente dallo stump precedente. Il campione viene realizzato
aggiornando i pesi in modo da favorire la presenza delle osservazioni peggio previste.
Per fare questo si calcola prima ’errore di previsione assoluto per ogni osservazione
come segue:

1 =1y —5:® |, i=1,...,n (3.13)

con y; valore osservato della risposta per 1'i-esima osservazione e y}-(b) valore previsto
della variabile risposta per 'osservazione i-esima da parte del b-esimo stump.

Gli errori di previsione vengono poi normalizzati applicando una funzione di costo
Lgb) che vincola i valori nell’insieme del dominio [0,1]. La funzione di costo puo
essere di tipo lineare, quadratico o esponenziale. Viene inoltre indicata con L® la
media delle funzioni di costo per il b-esimo stump.

L’errore totale dello stump e:
n
eo=> wL" i=1..n (3.14)
i=1

La variabile scelta per lo stump sara quella che minimizzera ep,.
I pesi campionari successivi avranno la seguente forma:

_ 7
wt =g M =1, (3.15)

I,(®) . .. . . .. . T
con B = ﬁ coefficienti di confidenza dei predittori, i quali vengono associati ai

pesi campionari b-esimi.

Le previsioni per la variabile risposta corrisponderanno alle corrispettive mediane
pesate dei valori previsti da ciascuno stump. Le previsioni avranno quindi la forma:

1 1 1
Ui =1 €Y. log— > = log— 3.16
vi mf{yz 2 B = 2 2 7By } (3.16)
by ® <o b
Y, XY
Utilizzando questo metodo solitamente si osserva un miglioramento consistente
rispetto al Random Forest in termini di capacita previsiva.
Gradient Boosting

Un altro celebre modello che puo essere implementato con gli alberi di regressione e
il Gradient Boosting. Il nome di questo modello ¢ preso dal metodo di discesa del
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gradiente su cui & basato.

Per presentare piu facilmente questo modello si prende in considerazione il caso
di una sola variabile risposta e di una sola esplicativa. I risultati possono essere
facilmente generalizzati al caso di variabili esplicative multiple.

Innanzitutto, per costruire il modello, si imposta una particolare funzione di costo:

1 1 .
L=L(y Fz)) =5y - F(x))* = S - 9)? (3.17)
E si inizializza il modello con un valore costante:
n
Fy(z) = argmin ZL(yi,'y) (3.18)

7 i=1

dove ¢ il valore che minimizza la somma delle funzioni di costo per ogni osservazione.

Si puo dimostrare che v corrisponde alla media della variabile risposta. Di conse-
guenza, l'albero iniziale sara costituito da una sola foglia.

Successivamente si applicano in maniera sequenziale B alberi con un numero di
foglie fissato. Solitamente il numero di foglie massimo viene impostato pari ad un
numero compreso tra 8 e 32.

Questi alberi sono costruiti sui cosiddetti pseudo-residui del modello, i quali, per il
b-esimo albero, possono essere espressi in termini di funzione di costo come segue:

o PL(%F(%’)
L OF ()

, t=1,...,n (3.19)
F(z)=Fp_1

Data la particolare funzione di costo, gli r;; non sono altro che le differenze tra
i valori osservati e quelli previsti. Il termine pseudo-residuo viene indicato per
distinguere gli r;; dai residui della regressione lineare. Se venisse, inoltre, utilizzata
una funzione di costo differente da quella sopra descritta, gli pseudo-residui non
corrisponderebbero piu ai residui classici.

La forma con cui sono stati scritti gli pseudo-residui € basata su una sola variabile
esplicativa. Si potrebbe generalizzare questo risultato al caso di una moltitudine
di variabili esplicative sostituendo la derivata con il piu generico gradiente da cui
prende il nome l'algoritmo.

Ad ogni iterazione, gli alberi sono realizzati a partire dai nuovi dati del tipo
{(zi,Tin) }7_y. Nel costruire gli alberi sugli pseudo-residui r;, si vanno a creare
delle regioni terminali R}, ciascuna corrispondente alla j-esima foglia del b-esimo
albero. Il numero totale di regioni terminali per il b-esimo albero sara Jp.

Ad ogni regione terminale si avranno dei nuovi valori previsti per la variabile risposta:

vjb = argmin Z L(yi, Fy—1(zi)+7), 7=1,....Jp (3.20)
937;€R7;j

Infine, al termine di ogni iterazione b-esima dell’algoritmo, si aggiorna il modello
corrente come segue:

Jp

Fb<1') = bel(.f) +n Z 'yjbl(x € ij) (3.21)
j=1
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con 7 che corrisponde al tasso di apprendimento (o learning rate) del modello che
viene fissato come valore nell’intervallo (0,1].

Una versione alternativa dell’algoritmo consiste nella scelta di un valore previ-
sto ottimale ~; a livello dell’intero albero invece che a livello di regione terminale.
Per questa configurazione dell’algoritmo i valori previsti per la risposta sono:

n Jy
o arginin > Ly, Foor(mi) + v _vppl(x € Ryp)), j=1,....J (3.22)
i=1 j=1
e il modello si aggiorna ad ogni b-esima iterazione come segue:
Iy
Fb(l’) = Fb_l(x) + Y% Z"yjb](ﬂf S ij) (323)
j=1
Per entrambe le configurazioni, le previsioni risultanti del Gradient Boosting corri-
sponderanno ai rispettivi valori di Fip(z).
Questo modello puo essere soggetto ad overfitting, per questo risulta fondamentale
applicare delle tecniche di regolarizzazione. In linea di massima il Gradient Boosting
risulta avere delle capacita previsive superiori all’AdaBoost ed & un modello assai
diffuso per trattare problemi previsivi complessi.

XG-Boost

L’XG-Boost, o Extreme Gradient Boosting, ¢ un algoritmo alla base di un modello
che prende ispirazione dal Gradient Boosting e lo estende ad una forma piu efficiente.
La configurazione dell’XG-Boost che andiamo a presentare & quella piu elementare e
viene spesso definita come versione greedy.

Per questo modello la funzione di costo L e l'inizializzazione con Fy(x) sono so-
litamente le stesse del Gradient Boosting classico. Ad ogni passo b-esimo, con
b=1,...,B, si calcolano due elementi fondamentali alla base dell’algoritmo:

. OL(y;, F'(x;) .
() = { L i=1,..n (3.24)
OF (i) Ip@)=r,
e
5 O L(y;, F(x; .
hy () = [8(;/((2)] . i=1,..,n (3.25)
zi) F(z)=Fp_1

dove gy(z;) € il gradiente della funzione di costo L calcolata al passo precedente,

mentre hy(x;) € Phessiana della funzione di costo calcolata anch’essa al passo prece-
dente.

Per la funzione di costo nella forma dell’equazione (3.17), si ha che il gradien-
te corrisponde alla somma dei residui, mentre I’hessiana rappresenta il numero dei
residui presenti.

Gli alberi di regressione sono cosl realizzati a partire dai nuovi dati { (;, —gs (2:) /(1)) }-
I valori previsti per la variabile risposta sono:

A

Gy = Sargmin Y hu(r) (?”(“) - qs(mi)) (3.26)

PP o1 by (2;)




42 3. Modelli Previsivi

Il modello viene conseguentemente aggiornato come segue:
Fy(x) = Fy_1(x) + ndy (3.27)

Le previsioni risultanti dell’algoritmo corrisponderanno a Fp(x).

Come il Gradient Boosting classico, I’XG-Boost viene spesso regolarizzato tramite
una metrica di tipo L1 o L2. Esistono anche delle tecniche di regolarizzazione piu
generiche basate ad esempio sul Moltiplicatore Lagrangiano.

Una problematica che si presenta con 1'utilizzo dell’XG-Boost ¢ la modalita con cui
ciascun albero sceglie la divisione dei suoi nodi. Normalmente si andrebbe infatti
a testare ogni possibile soglia di suddivisione (split) dell’albero in base ai valori
osservati, ma questo richiederebbe dei costi computazionali estremamente elevati
per grandi dataset. Le soglie di suddivisione sono allora spesso approssimate con
i quantili pesati delle variabili esplicative. Ulteriori vantaggi dell’XG-Boost sono
relativi a motivi di efficienza legati all’ottimo utilizzo delle risorse computazionali.

3.5 Selezione dei Modelli

La selezione del modello & una procedura che ha ’obiettivo di eleggere il miglior
modello di analisi tra quelli disponibili secondo un determinato criterio.
Questo procedimento si articola essenzialmente in due parti:

e Selezione delle Variabili Esplicative: si selezionano le variabili esplicative
che vengono utilizzate nel modello prescelto al fine di mantenere un buon
bilanciamento tra adattamento ai dati osservati e capacita previsive.

o Tuning degli Iperparametri: si cercano gli iperparametri, tra un range di valori
possibili, che permettono di ottenere un modello efficiente.

Spesso nella selezione di un particolare modello ¢ presente soltanto uno dei due
procedimenti appenza descritti. Ad esempio, per i modelli di regressione parametrica
non sono presenti iperparametri, di conseguenza, non € necessario svolgere il tuning.
Per la selezione delle variabili nei modelli parametrici il criterio che prenderemo
come riferimento ¢ il criterio di informazione Bayesiana (BIC).

In tutti gli altri casi, si prendera in considerazione 1’errore quadratico medio (RMSE)
che si presenta nella seguente forma:

(Y — 0i)?

RMSE = (| ==L - (3.28)

dove y; sono i valori osservati della variabile risposta e §; sono i valori previsti dal
modello per la risposta, entrambe per I'i-esima unita.

Per confrontare tutti i modelli selezionati, oltre al’RMSE si valuteranno anche
altre due metriche fondamentali in modo tale da non favorire determinati modelli
per il loro metodo di costruzione.

Le metriche a cui ci riferiremo sono l’errore medio assoluto (MAE) e il coefficiente
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di determinazione RZ.
L’errore medio assoluto e:

n PR A.
MAE = M (3.29)
n
Mentre il coefficiente di determinazione é:
RSS (g — Gi)2
RP=1-1222 _q_ —Z;—l(% 31)2 (3.30)
TSS Zi:l(yi - yz)

dove RSS ¢ la devianza residua e T'S\S ¢ la devianza totale.

Per stimare accuratamente queste metriche, si consiglia di utilizzare una proce-
dura di convalida incrociata (cross-validation).

In particolare, nel nostro caso si applichera la k-fold cross validation. Con questa
tecnica il campione originale viene suddiviso aleatoriamente in k sottocampioni (fold)
di uguali dimensioni. Dei k sottocampioni, un solo sottocampione viene mantenuto
come set di validazione per testare il modello, mentre i restanti £ — 1 sottocampioni
vengono utilizzati come dati di training.

Il processo viene quindi ripetuto k£ volte, dove ognuno dei k sottocampioni viene
utilizzato esattamente una volta come set di validazione. I k risultati possono poi
essere raggruppati (ad esempio calcolando la loro media) per produrre una singola
stima. L’indicatore che ne risultera sara uno stimatore di cross-validation.

Per mantenere un buon rapporto tra distorsione e variabilita del modello si decidera
di impostare il numero k di sottocampioni pari a 10. Questo numero di sottocampioni
risulta adeguato per dataset di modeste dimensioni (con piu di 1000 osservazioni).
Il tuning degli iperparametri puo essere realizzato seguendo varie possibili tecniche.
La piu tradizionale & la Ricerca a Griglia (Grid Search) che consiste nell’assegnazione
di un insieme di valori per gli iperparametri che vogliamo ottimizzare provando tutte
le possibili combinazioni e verificando quale mostra capacita previsive migliori.
Questa procedura puo essere eseguita in parallelo alla cross-validation attraverso
numerosi approcci. Il pitt semplice consiste nell’applicare la k-fold cross-validation
con ciascun set di iperparametri valutando a sua volta, per ognuno di esso, una
stima dell’errore di cross-validation (come la stima del’RMSE cross-validation).
Gli iperparametri associati alla stima dell’errore di cross-validation saranno quelli
poi impiegati nel modello finale.

Approcci simili si hanno per unire per unire il processo di selezione delle esplica-
tive alla cross-validation. In generale, tutti i metodi che combinano la selezione
delle variabili con il processo di costruzione del modello (compreso il tuning degli
iperparametri) sono chiamati "Metodi Wrapper".
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Capitolo 4

Modelli Previsivi Spaziali

In questo capitolo si vogliono presentare dei modelli previsivi spaziali volti ad
analizzare in maniera diretta I'impatto degli effetti spaziali presenti nei dati.
A tal fine, per descrivere gli effetti spaziali nei dati esistono due diversi termini:

e Autocorrelazione Spaziale: spesso indicata come interazione spaziale o variazio-
ne spaziale su piccola scala, € la correlazione di una variabile con sé stessa per
motivi spaziali. In altri termini, &€ una misura di similarita o dissimilarita tra le
caratteristiche di unita spazialmente vicine. Valori positivi di autocorrelazione
spaziale indicano che le unita aventi simili valori per determinate variabili
tendono a raggrupparsi nello spazio, mentre in caso di autocorrelazione spa-
ziale negativa, le unita tendono a essere circondate da unita vicine con valori
diversi tra loro. A volte si fa riferimento all’autocorrelazione spaziale come
dipendenza spaziale, mentre per alcune fonti I’autocorrelazione spaziale ¢ una
forma specifica di dipendenza spaziale, dove quest’ultima indica una relazione
generica tra una variabile e lo spazio circostante.

o Eterogeneita Spaziale: anche conosciuta come struttura spaziale, non staziona-
rieta o variazione spaziale su larga scala, si riferisce a differenze in una regione
spaziale nella media, nella varianza, nelle strutture di correlazione spaziale o
di autocorrelazione spaziale.

Nel capitolo capitolo precedente abbiamo visto come gli effetti spaziali possono essere
trattati dai modelli non spaziali con I'introduzione di variabili territoriali. In questo
capitolo ci focalizzeremo sul trattamento dell’autocorrelazione spaziale, assumendo
di trovarci in un contesto di omogeneita spaziale.

Infatti, solitamente ’eterogeneita spaziale puo essere ridotta dalla presenza di nume-
rose variabili esplicative come nel nostro contesto applicativo. Le stime dei parametri
e le capacita previsive dei modelli spaziali che assumono omogeneita spaziale sono
spesso comparabili a quelli che non la assumono.

Un ultimo motivo per giustificare questa scelta ¢ legato al costo computazionale.
Per gli immobili di una certa area, avendo a che fare spesso con un cospicuo numero
di osservazioni, i modelli utilizzati devono essere quanto piu semplici ed efficienti
possibili. Si puo infatti dimostrare che i modelli per I'eterogeneita spaziale risultano
particolarmente onerosi.
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L’analisi dei dati spaziali per trattare I’autocorrelazione spaziale puo essere quindi
condotta attraverso differenti tipologie di modelli (o processi). Un tipo di modello
frequentemente utilizzato nella letteratura scientifica ¢ il modello autoregressivo
simultaneo (SAR). In un modello SAR, le relazioni tra i valori della variabile risposta
in tutte le unita spaziali sono descritte simultaneamente e gli effetti spaziali sono
considerati endogeni.

Un altro modello molto diffuso ¢ il modello autoregressivo condizionale (CAR). Nei
modelli CAR, la distribuzione di una variabile risposta (o dell’errore di regressione)
per un’unita spaziale & specificata condizionando i valori dei suoi vicini e gli effetti
spaziali dei vicini che vengono considerati esogeni.

Per ultimo, i dati spaziali possono essere analizzati utilizzando il modello della media
mobile spaziale (SMA), che modella il processo di errore in posizioni vicine con una
combinazione lineare di errori casuali, detti rumori bianchi, in modo simile a quello
che avviene per i modelli a media mobile nelle serie temporali.

In genere le varie modalita di specificazione dei modelli offrono risultati simili. Data
quindi la facilita di interpretazione e modellazione, in questo testo tratteremo tutti i
modelli come SAR. Questi modelli sono anche i piu utilizzati in ambito economico.

4.1 Analisi Esplorativa Spaziale

L’analisi esplorativa spaziale dei dati (ESDA) & un processo aggiuntivo fondamentale
rispetto all’analisi esplorativa classica per ’analisi preliminare dei dati spaziali.
Un obiettivo specifico del’ESDA ¢ la visualizzazione e la sintesi dei dati dalla
prospettiva spaziale, che aiuta a suggerire potenziali modelli da formulare e metodi
statistici da applicare per 'inferenza.

La fase iniziale del’ESDA spesso prevede la visualizzazione spaziale dei dati di
interesse. Cio consente di identificare dei pattern spaziali tra i dati e i potenziali
modelli statistici spaziali da applicare. A seguito di questo risulta utile specificare
una struttura di vicinanza tra i dati e una conseguente matrice dei pesi spaziali.
Infine si possono applicare degli indicatori spaziali per quantificare gli effetti spaziali
presenti nei dati.

4.1.1 Struttura di Vicinanza

Per condurre 'ESDA e applicare la regressione spaziale, & spesso necessario specifica-
re una struttura di vicinanza per ogni unita spaziale che comprende le unita vicine
su un’area di studio. Da qui in avanti con il termine unita spaziale intenderemo
specificatamente un’unita statistica che puo essere collocata in uno specifico punto
dello spazio. Altri tipi di analisi spaziale fanno invece riferimento alle unita spaziali
come unita areali o geostatistiche.

Una struttura di vicinanza puo essere basata sulla contiguita spaziale o sulla distan-
za. La struttura basata sulla contiguita e costruita in base al fatto che due unita
spaziali confinino o meno tra loro. Su una griglia regolare, la struttura di vicinanza
¢ relativamente semplice da specificare. Ad esempio, la struttura di vicinanza di
contiguita "a torre" specifica i vicini come unita spaziali con confini condivisi in
orizzontale o verticale. La struttura di vicinanza di contiguita "a regina" specifica i
vicini come unita spaziali con confini o vertici condivisi.
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I dati spaziali si trovano pero tipicamente su griglie irregolari. Quando si costruiscono
strutture di vicinanza su griglie irregolari si utilizzano le stesse regole che valgono
per le griglie regolari. In questi casi, con una struttura di vicinanza di contiguita a
torre, i vicini di un’unita spaziale sono le unita con linee di confine condivise. In
una struttura di vicinanza di contiguita a regina, i vicini di un’unita spaziale sono le
unita con linee di confine o vertici condivisi. Queste definizioni non sono pero del
tutto pertinenti quando le unita sono di punto e non areali.

Per quanto riguarda le strutture di vicinanza basate sulla distanza, ne esistono
essenzialmente di due tipi. Si puo avere una struttura di vicinanza basata su un
numero specifico di vicini che ha lo stesso principio del K-nearest neighbors.

In tal caso i vicini sono calcolati in base ad una specifica metrica. Altrimenti i vicini
possono essere trovati in base ad una fissata distanza. A partire da un’unita spaziale,
le unita che si trovano entro quella distanza saranno i vicini dell’unita spaziale di
riferimento.

Dopo aver determinato la struttura di vicinanza, occorre quantificare la prossi-
mita dei vicini trovati per ciascuna unita spaziale. Si introducono quindi delle
matrici dei pesi spaziali. Una matrice dei pesi spaziali &€ composta dai valori dei pesi
spaziali che mettono in relazione il valore di una determinata variabile per un’unita
spaziale con quello osservato nelle unita spaziali vicine secondo una struttura di
vicinanza prestabilita.

I pesi spaziali per ciascuna unita dipendono strettamente dal numero di vicini.

Il numero dei vicini non e infatti necessariamente lo stesso per tutte le unita, il che
comporta pesi spaziali differenti. Un modo per determinare i pesi consiste nello
standardizzare ogni riga di una matrice di pesi spaziali (corrispondente ai vicini di
una determinata unita) dividendo ogni valore per la somma di quella riga. L’appli-
cazione di una matrice di pesi spaziali standardizzata per riga da come risultato
I’attributo medio ponderato dei vicini, rendendo l'interpretazione piu significativa e
piu facile da comprendere.

I vicini di un’unita spaziale possono essere ponderati diversamente. In primo luogo,
si potrebbero ponderare i vicini in base alle distanze da un’unita spaziale e utilizzare
I'inverso di questi valori per dare ai vicini piu vicini un peso maggiore rispetto a
quelli piu lontani.

In questo caso i pesi spaziali sono:

1
7. sedip <90 (4.1)

Wi =
‘ 0 altrimenti

dove d;, ¢ la distanza tra I'unita spaziale i-esima e I'unita k-esima e § € una distanza
soglia prefissata.

Pitt in generale, si puo utilizzare la potenza p-esima dell’inverso delle distanze:

1\P
se d;, < 0

Wik = (dk) = (4.2)
0 altrimenti

Esistono poi ulteriori metodi di ponderazione, ma sono specifiche di alcuni tipi di
unita spaziali. Essendo noi interessati a unita spaziali di punto, non & necessario
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presentare altri metodi.

Per selezionare la corretta matrice dei pesi spaziali, la teoria & molto limitata. Un
metodo che si puo utilizzare ¢ il confronto delle matrici tramite una specifica metrica
a seguito dell’applicazione di un modello spaziale.

4.1.2 Indicatori di Autocorrelazione Spaziale

In letteratura esistono numerosi indicatori volti a valutare la presenza di effetti
spaziali nei dati. Come anticipato precedentemente, ci concentreremo sull’aspetto
dell’autocorrelazione spaziale. Tali indicatori possono indicare una forma globale o
locale di dipendenza spaziale. Gli indicatori globali provvedono a studiare pattern
spaziali tra i dati nell’intera area di studio, invece gli indicatori locali si riferiscono a
precise sottoregioni spaziali.

Indice di Moran

L’indice di Moran (o indice I di Moran) ¢ una misura di intensita globale dell’auto-
correlazione spaziale, ovvero una misura della somiglianza tra unita spaziali vicine.
E’ definito come segue:

n im1 2= Wi (Y — Y)(y; — )
T 2 Wi S (yi — 9)?
dove w;; sono i pesi spaziali tra I'unita i-esima e 'unita j-esima, y; ¢ il valore

osservato dell’'unita i-esima per la variabile di interesse e ¥ € la media della variabile
per tutte le unita.

I= (4.3)

Se si standardizzano i pesi spaziali per riga, 'indice di Moran si puo esprimere
nella seguente forma semplificata:

im1 =1 Wi (i — Y)Y — Y)

= S (= 3)°

(4.4)

Quando i valori della variabile sono piu simili (o dissimili) tra unita spaziali vicine,
I’indice di Moran tende ad avere un valore piu estremo. Quando la relazione tra i
vicini & piu debole 'indice tende a 0.

Pertanto, questo indicatore ¢ simile all’indice di correlazione di Pearson, il quale
misura l'intensita di una relazione lineare tra due variabili. In particolare, corrisponde
all’indice di Pearson nel caso in cui si voglia descrivere la relazione tra una variabile
Y e la variabile esprimibile come prodotto matriciale WY, dove W e la matrice dei
pesi spaziali.

Per analizzare graficamente I’autocorrelazione spaziale si puo utilizzare un diagramma
di Moran, il quale mette in relazione i valori assunti da ¥ con WY. Questo illustra
la relazione tra i valori dell’attributo scelto in ogni localita e il valore medio dello
stesso attributo nelle localita vicine. E istruttivo considerare ogni quadrante del
grafico. Nel primo quadrante si trovano i casi di tipo "High-High" in cui sia il
valore effettivo che il valore medio locale dell’attributo sono superiori al valore medio
generale. Allo stesso modo, nel terzo quadrante si trovano i casi di tipo "Low-Low"
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in cui sia il valore effettivo che il valore medio locale dell’attributo sono inferiori al
valore medio generale. Questi casi confermano I’autocorrelazione spaziale positiva. 1
casi negli altri due quadranti (High-Low e Low-High) indicano un’autocorrelazione
spaziale negativa. A seconda dei gruppi dominanti, ci sara una tendenza generale
all’autocorrelazione spaziale positiva, negativa o nulla. Con un’attenta analisi si puo
quindi identificare quali aree della mappa sono maggiormente responsabili dell’alta
o bassa autocorrelazione spaziale osservata e quali, eventualmente, sono in contrasto
con l'assunzione.

L’indice di Moran puo essere quindi interpretato come la pendenza della retta di
regressione nel diagramma di Moran della variabile sulla sua media ponderata con i
rispettivi pesi spaziali.

In assenza di autocorrelazione spaziale, il valore atteso dell’indice di Moran e pari a:

B(I) = -~ ! 1 (4.5)

Di conseguenza, maggiore & la dimensione del campione n, piu il valore atteso
dell’indice di Moran assumera valori prossimi a 0.
Analogamente, la varianza dell’indice é:

7154 — 5355 _
(n—1)(n—2)(n—3)S3

Var(I) = (E(I))? (4.6)

con
e So= 2?21 2?21 Wi 4
1
o« S1=3520 Z?:l(wijwji)z

. Sy

2
>ic1 (E?:l wij + 325 wji)

. N
= P

o« Sy = (n2 —3n+ 3)51 — nSy + 353
e S5=(n%?—n)S; — 2nSy + 652

Per grandi campioni, i valori che puo assumere questo indice ricadono nell’intervallo
di valori reali (—1,1). Valori positivi dell’indice indicheranno un’autocorrelazione
spaziale positiva, mentre valori negativi denoteranno un’autocorrelazione spaziale
negativa. Per una migliore interpretazione, si preferisce studiare I’indice in base al
valore assunto da (I — E(I)), ovvero in base alla differenza tra il valore osservato e
il suo valore atteso.

Per valori elevati di n, 'indice di Moran si distribuisce normalmente. Per testare
la significativita dell’autocorrelazione spaziale si puo costruire una statistica test z
basata sull’indice di Moran del tipo:

I—E(I)
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dove il valore atteso E(I), sotto I'ipotesi nulla di assenza di autocorrelazione spa-
ziale, puo essere approssimato dall’equazione (4.5), mentre la rispettiva varianza
dall’equazione (4.6).

Conseguentemente, sotto l'ipotesi nulla, la statistica test z si distribuisce come
una normale standard. Il p-value per questa statistica puo essere ottenuto tramite
test di approssimazione normale basato sulla distribuzione asintotica dell’indice, test
di permutazione o simulazione Monte Carlo.

Indice di Geary

L’indice di Geary (o indice C di Geary) ¢ una misura globale di autocorrelazione
spaziale alternativa all’indice di Moran e ha la seguente forma:

B n—1 1 2y wig (i — Y5)
23001 20 wij S (yi — )?
I valori che assume I'indice di Geary sono necessariamente positivi. Sotto I'ipotesi

di assenza di autocorrelazione spaziale, il valore atteso dell’indice di Geary € pari a
1, ovvero:

C

(4.8)

E(C)=1 (4.9)

Valori prossimi a 0 indicano un’autocorrelazione spaziale positiva, mentre valori
maggiori di 1 sono propri di dati spazialmente autocorrelati negativamente.
Utilizzando gli stessi termini presentati con l'indice di Moran, si puo scrivere la
varianza dell’indice di Geary come:

(n —1)(25; + S2) — S3
2(n+1)S3

Var(C) = (4.10)
Per campioni di dimensione elevata, si puo ricavare la statistica test z e il corrispettivo
p-value come avvenuto per 'indice di Moran.

Nel confrontare i due indici globali, I'indice di Geary ¢ inversamente proporzionale
all’indice di Moran, ma non in modo identico e non ha la stessa valenza. L’indice
di Geary ¢ infatti piu sensibile all’autocorrelazione spaziale locale. In genere i due
indici possono essere utilizzati per tutti i tipi di dati quantitativi. L’indice di Moran
& piu potente statisticamente dell’indice di Geary, ad esclusione dei dati binari.

Indicatore Locale di Associazione Spaziale

Come accennato precedentemente, I’Indicatore Locale di Associazione Spaziale
(LISA) ¢ un qualsiasi indicatore che indica un’associazione di tipo spaziale attorno
ad una osservazione che ¢ costruito a partire da un indicatore di associazione globale.
L’utilizzo del LISA puo portare al raggiungimento di molteplici obiettivi, tra cui:

e valutare le ipotesi di stazionarieta, come la varianza costante nello spazio;

¢ individuare regioni locali di non stazionarieta, come cluster spaziali o unita
spaziali con valori eccessivamente estremi;

 identificare le distanze oltre le quali ’associazione spaziale € debole o nulla;
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 identificare gli outliers o i diversi regimi spaziali.

Gli indicatori a cui faremo riferimento per ’analisi sono quelli che vanno a misurare
I’autocorrelazione spaziale locale. Questi indicatori possono essere costruiti a partire
dagli indici globali che abbiamo precedentemente presentato. Analizziamo piu nel
dettaglio questi casi.

L’indicatore LISA associato ad un indice di Moran locale con pesi spaziali standar-
dizzati per riga si presenta nella forma seguente:

Ii=(yi —9) Y wij(y; — ) (4.11)
j=1

dove y; e il valore osservato della variabile di interesse per 'unita spaziale i-esima,
y; ¢ il valore osservato per la j-esima unita, w;; ¢ il peso spaziale in corrispondenza
dell’'unita i e 7, e, infine, y ¢ la media dei valori della variabile.

La versione del LISA come indice di Geary locale & invece:
n
Ci =Y wij(yi — 5)° (4.12)
j=1

E’ da notare che, a differenza degli indicatori globali, gli indicatori LISA sono relativi
a ciascuna unita spaziale. Le statistiche test dell’indicatore LISA in queste due
varianti possono essere formulate in modo analogo a quanto visto per 'indice di
Moran e 'indice di Geary globali.

Anche in questo caso la significativita della statistica LISA puo essere basata sull’ap-
prossimazione analitica tramite distribuzione normale, ma non ¢ molto affidabile nella
pratica. Un approccio preferibile consiste nell’utilizzo di un test di permutazione o
nell’utilizzo di una simulazione di tipo Monte Carlo.

L’interpretazione dei valori LISA sono sulla stessa linea di quelli degli indici globali
e, come anticipato, i risultati possono essere clusterizzati. L’assegnazione ad uno dei
4 diversi cluster (High-High, Low-Low, High-Low o Low-High) avviene prefissando
una determinata soglia di assegnazione in valore assoluto. In corrispondenza dei
valori osservati piu estremi si andranno ad assegnare le unita ai cluster che indicano
un’autocorrelazione positiva. In caso contrario, si terra conto del gruppo dominante.

4.2 Modello di Lag Spaziale

Il modello di lag spaziale (SLM) ¢ il modello spaziale piu celebre e utilizzato tra
quelli presenti in letteratura. Questo modello mette in relazione la variabile risposta
e un insieme di variabili esplicative attraverso la regressione come avviene nella
regressione lineare standard. Inoltre, la variabile risposta & autoregressiva sulle
variabili risposta ritardate spazialmente (ovvero con lag spaziale sulla risposta).

Il modello di lag spaziale & specificato come:

p n
Y;‘Zﬁo—FZ,@inj—l-prikYk—l-ei, 1=1,...,n (413)
=1 k=1

con
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o Y; : variabile dipendente (o risposta) quantitativa continua per 1’ i-esima
osservazione, con ¢ = 1, ..., n;

e Y} : variabile risposta per la k-esima osservazione;

e Xj; : variabile indipendente (o esplicativa) j-esima, con j = 1,...,p, per I
i-esima osservazione, con ¢ = 1,...,n;

e (o : intercetta del modello, corrisponde al valore atteso di Y quando tutte le
variabili esplicative sono nulle;

e [; : coefliciente angolare (o coefficiente di regressione) per la variabile X, con
j = 17 "'?p;

e p: parametro scalare di lag spaziale;

e w;, : peso spaziale per 1’i-esima osservazione in corrispondenza della k-esima
osservazione vicina;

e ¢; : errore statistico per I’ i-esima osservazione, i = 1,...,n. Si assume che gli
errori siano tra loro indipendenti e normalmente distribuiti.

In forma matriciale il modello si puo esprimere, senza intercetta, come:
Y =XB+pWY +e¢ (4.14)

con

e Y : vettore nx1 della variabile risposta;

e X : matrice nxp delle variabili esplicative;

e (3 : vettore px1 dei coefficienti di regressione;

e p: parametro scalare di errore spaziale;

e« W : matrice nxn dei pesi spaziali;

e ¢ : vettore nx1 degli errori indipendenti e normalmente distribuiti.

Si denota che il termine autoregressivo WY indica una variabile con lag spaziale in
quanto € una media ponderata delle variabili risposta vicine.

Si pud osservare, inoltre, che se il parametro scalare di lag spaziale p ¢ nullo,
il modello di lag spaziale assume la stessa forma del modello di regressione lineare.
I parametri possono essere stimati tramite stime di massima verosimiglianza a segui-
to della determinazione della matrice dei pesi spaziali W. Definire questa matrice
significa identificare le osservazioni vicine imponendo una struttura di vicinanza ed
assegnando dei pesi a ciascuna di queste osservazioni.

Le assunzioni di questo modello sono analoghe al modello di regressione lineare, ad
esclusione dell’assunzione di uguale distribuzione degli errori. Per questo motivo si
possono applicare i consueti metodi diagnostici della regressione lineare.

Ulteriori metodi diagnostici servono a rilevare ’eventuale dipendenza spaziale residua
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dopo aver tenuto conto della dipendenza da lag spaziale attraverso il modello.
L’eventuale dipendenza da lag spaziale residua puo essere diagnosticata da un test
LR, mentre ’eventuale dipendenza da errore spaziale residua puo essere diagnosticata
dai test LM e LM robusto. Tratteremo piu approfonditamente questi aspetti nella
sezione 4.6.

4.3 Modello di Lag Spaziale sulle X

Il modello di lag spaziale sulle X (SLX) possiede, come il modello di lag spaziale
classico, un termine di lag che mette in relazione le osservazioni con quelle spazial-
mente vicine. Il lag & pero presente sulle variabili esplicative e non sulla risposta.
La sua specificazione ¢ la seguente:

p p n
Y, =B+ Z,Binj + Z (9] Z wikaj> +¢,1=1,...,n (4.15)
j=1

j=1 k=1

con

e Y, : variabile risposta quantitativa continua per 1’ i-esima osservazione, con
1=1,...,m

o X, : variabile esplicativa j-esima, con j = 1,...,p, per |’ i-esima osservazione,
cont=1,...,n;

e Xj; : variabile esplicativa k-esima, con k = 1,...,p, per I’ i-esima osservazione,
coni=1,..,n;

e (o : intercetta del modello, corrisponde al valore atteso di Y quando tutte le
variabili esplicative sono nulle;

o (3 : coefficiente di regressione per la variabile X;, con j =1, ..., p;
o 0; : parametro di spillover spaziale per la j-esima variabile;

e w;, : peso spaziale per 1’i-esima osservazione in corrispondenza della k-esima
osservazione vicina;

e ¢; : errore statistico per I’ i-esima osservazione, ¢ = 1,...,n. Si assume che gli
errori siano tra loro indipendenti e normalmente distribuiti.

Senza intercetta, si ha la seguente forma matriciale:
Y=XB+WX0+e¢ (4.16)
con
e Y : vettore nx1 della variabile risposta;
e X : matrice nxp delle variabili esplicative;

e (3 : vettore px1 dei coefficienti di regressione;
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e« W : matrice nxn dei pesi spaziali;
e 0 : vettore px1 dei parametri di spillover spaziali;
e ¢ : vettore nx1 degli errori indipendenti e normalmente distribuiti.

La matrice W X rappresenta il termine autoregressivo e corrisponde alla matrice di
disegno delle variabili esplicative con lag spaziale, ovvero sono medie ponderate delle
rispettive variabili esplicative dei vicini.

Se il vettore dei parametri di spillover spaziali # ¢ un vettore nullo, il proble-
ma di regressione si riduce al caso della regressione lineare. Come nel caso del
modello di lag spaziale, nel modello di lag spaziale sulle X i parametri possono essere
stimati attraverso il metodo di massima verosimiglianza dopo la determinazione
della matrice dei pesi spaziali W. Le assunzioni del modello e i metodi diagnostici
sono analoghi a quelli del modello di lag spaziale.

4.4 Modello di Errore Spaziale

Assieme ai modelli di lag spaziale, il modello di errore spaziale (SEM) ¢ il principale
tipo di modello di regressione spaziale. L’assunzione fondamentale & che la correla-
zione spaziale tra le osservazioni sia dovuta a caratteristiche non osservate, che sono
raggruppate spazialmente o seguono un modello spaziale, e che siano indipendenti
dalle covariate incluse. Un modello di errore spaziale tiene conto della dipendenza
spaziale attraverso un termine di errore normalmente distribuito e un termine di
errore associato al lag spaziale.

Il modello di errore spaziale ¢ specificato come:

p n
Y;;:Bo—i—Zﬁinj+)\Zwikuk+ei, 1=1,...,n (4.17)
j=1 k=1

con

e Y, : variabile risposta quantitativa continua per 1’ i-esima osservazione, con
1=1,...,n;

e X, : variabile esplicativa j-esima, con j = 1,...,p, per |’ i-esima osservazione,
coni=1,..,n;

e (o : intercetta del modello, corrisponde al valore atteso di Y quando tutte le
variabili esplicative sono nulle;

e (3 : coefficiente di regressione per la variabile X;, con j =1, ..., p;
e )\ : parametro scalare di errore spaziale;

e w; : peso spaziale per 1’i-esima osservazione in corrispondenza della k-esima
osservazione vicina;

e u : termine di errore per la k-esima osservazione;
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e ¢; : errore statistico per I’ i-esima osservazione, ¢ = 1,...,n. Si assume che gli
errori siano tra loro indipendenti e normalmente distribuiti.

La corrispondente forma matriciale senza intercetta é:

Y=XB8+AMWu+e (4.18)
con
e Y : vettore nx1 della variabile risposta;
e X : matrice nxp delle variabili esplicative;
e (3 : vettore px1 dei coefficienti di regressione;

e u : vettore nx1 degli errori;

e )\ : parametro scalare di errore spaziale;

e W : matrice nxn dei pesi spaziali;

e ¢ : vettore nx1 degli errori indipendenti e normalmente distribuiti.

Il termine autoregressivo Wu risulta essere un termine di errore con lag spaziale
perché € una media ponderata dei termini di errori dei vicini.

Se il parametro scalare di errore spaziale A\ & nullo, il modello di lag spaziale assume
la forma di un modello di regressione lineare. I metodi di stima dei parametri, le
assunzioni del modello e i metodi diagnostici, sono analoghi ai precedenti modelli.

4.5 Modelli Spaziali Derivati

Dai tre modelli appena descritti € possibile derivarne degli altri pit complessi.

I modelli restituiti risulteranno essere delle combinazioni dei precedenti. Ognuno di
questi modelli sara caratterizzato dalla presenza di almeno due parametri spaziali.
Questi modelli vengono solitamente utilizzati per gestire situazioni di dipendenza
spaziale non adeguatamente descrivibili dai modelli di base.

Il modello di Durbin spaziale (SDM) combina il termine autoregressivo del modello
SLM con la specificazione di spillover spaziale delle esplicative e si puo scrivere come:

Y = XB+ pWY + WX0+¢ (4.19)

Il modello autoregressivo spaziale combinato (SAC) comprende una variabile risposta
autocorrelata e un termine di errore autocorrelato, il tutto esprimibile come:

Y =XB+pWY + A\Wu+e€ (4.20)

11 terzo modello aggregato ¢ il modello di errore spaziale di Durbin (SDEM), il quale
combina le caratteristiche del modello SEM con quelle del SLX:

Y=XB+WXO0+A\Wu+e (4.21)
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Infine, combinando tutti e tre i modelli di base, si puod ottenere un modello ancora
piu generale e comprensivo che prende il nome di modello spaziale generale annidato
(GNS). Talvolta questo modello ¢ anche indicato come modello di Manski e si puo
formulare come segue:

Y =XB+4+pWY + WX0+ AWu+ ¢ (4.22)

Si nota che nei modelli trattati la matrice dei pesi spaziali W & uguale per tutti i
termini dei modelli; una diversa specificazione di W e propria di modelli ancor piu
generali che non vengono qui presi in considerazione.

Riportiamo i modelli presentati nella tabella sottostante in base alla presenza o
meno degli specifici parametri spaziali:

Parametri p=0 p#0

0 =0, A=0 | modello lineare SLM

0+0, A\=0 SLX SDM
0=0, \#£0 SEM SAC
040, \#£0 SDEM GNS

Tabella 4.1. Modelli di Regressione Spaziale

4.6 Selezione del Modello Spaziale

La procedura di selezione del modello spaziale classica differisce dalla selezione dei
modelli che non prevedono effetti spaziali. Si potrebbe infatti selezionare il modello
spaziale utilizzando i criteri di selezione del modello usuali che sono stati trattati nella
sezione 3.5. Questo approccio ha pero il difetto di dover necessariamente stimare
tutti i modelli possibili, inclusi quelli che non verranno poi utilizzati. Si vuole invece
applicare una procedura basata su un’analisi spaziale mirata che permetta di evitare
la specificazione di modelli spaziali troppo onerosi che verrebbero scartati.

Si propongono cosi alcune statistiche test per i modelli spaziali e una procedura che
applica questi test in modo situazionale in base ai dati osservati.

4.6.1 Statistiche Test

Per la selezione del modello spaziale esistono numerosi test che possono essere appli-
cati. Questi test hanno 'obiettivo di indicare formalmente quale modello spaziale ¢
piu consono al trattamento dei dati.

Inizialmente queste verifiche si applicano ad un modello di base. Poiché il punto
di partenza in comune tra tutti i modelli spaziali esaminati ¢ il modello di regres-
sione lineare standard con stime OLS, prenderemo tale modello come riferimento
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nell’esposizione dei test. I risultati possono pero essere generalizzati per confronti di
modelli piti complessi.

Volendo semplificare la forma delle statistiche test, utilizzeremo una notazione matri-
ciale. I test che mostreremo sono volti a verificare I'ipotesi implicita di presenza di
autocorrelazione spaziale o 'esplicita presenza di un determinato parametro spaziale.
Per quest’ultimo caso sono disponibili tre diversi approcci: il Test di Wald basato
sulla stima dei valori dei parametri, il Test del Rapporto di Verosimiglianza basato
sulla differenza di adattamento del modello e il Test dei Moltiplicatori di Lagrange
basato sulla pendenza della funzione di verosimiglianza.

Questi test sono asintoticamente equivalenti, mentre per campioni finiti si ha che
W > LR > LM. In genere si tenderebbe quindi a preferire il Test del Rapporto di
Verosimiglianza in quanto piu equilibrato e potente statisticamente.

Il test LR richiede pero la specificazione di entrambi i modelli che si vogliono ve-
rificare, per questo ¢ pitt oneroso. Il Test di Wald e il Test dei Moltiplicatori di
Lagrange richiedono invece la specificazione di un solo modello. In particolare il test
W richiede di stimare il modello dell’ipotesi alternativa, ovvero quello pitt complesso,
mentre il test LM necessita della sola stima del modello dell’ipotesi nulla, ovvero
quello piu semplice.

Essendo i modelli molto dispendiosi in termini di costo computazionale, si preferisce
utilizzare il Test dei Moltiplicatori di Lagrange quando si devono eseguire test ri-
petuti e il Test del Rapporto di Verosimiglianza per un confronto tra modelli piu
rigoroso. Il Test di Wald non é generalmente preso in considerazione per il confronto
tra modelli spaziali.

Test di Moran

Il test di Moran puo essere utilizzato per verificare la presenza dell’autocorrelazione
spaziale a partire dai residui di un modello.
L’indice di Moran ¢ definito dall’equazione (4.3) o dall’equazione (4.4). Nel caso
dell’applicazione del test di Moran sui residui del modello di regressione lineare
standard con stime OLS, i momenti dell’indice di Moran sono diversi rispetto a quelli
presentati nella sezione 4.1. Infatti, quelli esposti in quella sezione corrispondono
al caso particolare in cui i momenti dell’indice di Moran sono calcolati sul modello
nullo (con sola intercetta).
Si puo dimostrare che generalmente il valore atteso dell’indice é:

tr(MW)

B)== """ (4.23)

e la sua varianza:

T

Varl) = G —p+2)

(B (4.24)

dove tr(-) indica la traccia di una matrice quadrata, M = I — X(X'X)"1X’
e la matrice di proiezione idempotente, W & la matrice dei pesi spaziali, T =
tr(MWMW') + tr(MW MW) + (tr(MW))? & una matrice composta dalle tracce
di MW, n e il numero di osservazioni e p € il numero di parametri nel modello
regressivo lineare.
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Dai momenti dell’indice si puo costruire una statistica test z che assume una
distribuzione normale standard sotto l'ipotesi nulla di assenza di autocorrelazione
spaziale. Nel caso di accettazione dell’ipotesi nulla, 1'utilizzo di modelli spaziali
a discapito di un piu semplice modello regressivo lineare ¢ sconsigliato. Il rifiuto
dell’ipotesi nulla deve essere invece interpretato con cautela. Esso indica infatti la
presenza di autocorrealazione spaziale residua, ma non indica quale approccio e/o
modello sarebbe preferibile.

Il test di Moran serve quindi ad offrire un’indicazione generica sulla presenza o
assenza di autocorrelazione spaziale nei dati a seguito dell’applicazione di un modello.
E’ necessario successivamente applicare ulteriori analisi al fine di comprendere la
fonte di autocorrelazione spaziale residua.

Test dei Moltiplicatori di Lagrange

Il Test dei Moltiplicatori di Lagrange (o Test Score di Rao) verifica i parametri
statistici in base al gradiente della funzione di verosimiglianza, noto come punteggio
o score, valutato sul valore puntuale del parametro ipotizzato sotto l'ipotesi nulla.
Se lo stimatore ristretto & sufficientemente vicino al massimo della funzione di verosi-
miglianza, il punteggio non dovrebbe differire da 0 piu dell’errore di campionamento.
Nella sua forma generica il test si presenta come:

LM = (4.25)
dove U(bp) = %0(060‘33) ¢ il gradiente calcolato in 6y della funzione di log-verosimiglianza
logL(0y|z) e I(6p) = —F (%logf(X; 9)\9) ¢ 'informazione attesa di Fisher sul vet-
tore dei parametri 6.

Volendo condurre dei test sui modelli spaziali di base denotiamo con LM, la
statistica test dei Moltiplicatori di Lagrange per la determinazione del lag spaziale e
L Mg, quella per ’errore spaziale.

Si ha allora che:

(eWy/S$?)? _ d,

LM, = 4.26
lag T T ( )
e
(eWe/S?)? &
LMy =—F——=->2- 4.27
err Tl Tl ( )
con e vettore dei residui del modello di regressione lineare standard, W matrice

dei pesi spaziali, y vettore dei valori osservati, S? = e/f valor medio dei quadrati
dei residui, T = tr(W + W)W), Ty =T} + (WXB)M(WXS)/S? e 3 vettore dei

coefficienti di regressione del modello lineare standard.

Le statistiche test (4.26) e (4.27), sotto l'ipotesi nulla di assenza, rispettivamente,
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di lag spaziale (p = 0) e di errore spaziale (A = 0), si distribuiscono secondo una
distribuzione x? (chi-quadrato) con un solo grado di liberta. Si rifiuta I'ipotesi
nulla se viene osservato un valore della statistica test piu estremo di quello che si
sarebbe osservato in assenza di lag (o errore) spaziale. Il p-value puo essere trovato
conseguentemente.

La limitazione principale del LM, € LM, consiste nel fatto che sono entrambi
potenti statisticamente 1'uno rispetto all’altro influenzandosi quindi a vicenda.

Per questo tali test possono essere scritti nella loro versione robusta come:

(dp - d/\)2

LM, =
lag T2 _ Tl

(4.28)

* (d)\ jle_Idp)2
LM = 4.2
err T1<1 Tng) ( 9)

Anche in questo caso, sotto ipotesi di assenza dei relativi parametri spaziali, le
statistiche test si distribuiscono come una x3.

Si nota infine che in letteratura non ¢ stata presentata una forma esplicita per
svolgere il Test dei Moltiplicatori di Lagrange per il lag spaziale sulle X. In quel caso
e preferibile applicare un apposito Test di Rapporto di Verosimiglianza.

Test del Rapporto di Verosimiglianza

I1 Test del Rapporto di Verosimiglianza (o Test di Wilks) valuta la bonta di adatta-
mento di due modelli statistici messi in relazione tra loro in base al rapporto delle
loro verosimiglianze. In particolare, un valore di verosimiglianza & trovato attraverso
la massimizzazione sull’intero spazio dei parametri e ’altro dopo aver impostato un
determinato vincolo proveniente dall’ipotesi nulla.

Il test € il seguente:

LR = -2 (L(e?)> (4.30)
L(0)

dove L(f) ¢ la verosomiglianza calcolata sul parametro di ipotesi nulla 6y e L(f) &
la verosimiglianza calcolata sul parametro stimato 6.

Se I'ipotesi nulla é supportata dai dati osservati, le due verosimiglianze non dovrebbe-
ro differire maggiormente rispetto all’errore di campionamento. Pertanto, il Test del
Rapporto di Verosimiglianza verifica se questo rapporto ¢ significativamente diverso
da 1 o, equivalentemente, se il suo logaritmo naturale & significativamente diverso da
0. Sotto I'ipotesi nulla, il test si distribuisce come una x? con un numero di gradi di
liberta pari alla differenza tra il numero di parametri del modello alternativo e il
numero di parametri del modello nullo.
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4.6.2 Procedura di Selezione

Per selezionare il corretto modello spaziale sono stati proposti diversi approcci.

Le strategie principali si catalogano in Forward Stepwise e Backward Stepwise. Nella
Forward Stepwise il processo di selezione va dal modello pit semplice a quello piu
complesso. Al contrario, la Backward Stepwise procede dal modello piu complesso a
quello piu semplice. Poiché i modelli spaziali sono spesso molto onerosi da stimare,
si preferisce 1'utilizzo di un approccio Forward.

La Forward Stepwise si puo articolare in due fasi successive:

1. La prima fase ha lo scopo di selezionare il modello spaziale di partenza tra
iquelli di base di tipo SAR. Si parte dalla stima del modello regressivo lineare con
stime OLS e si procede progressivamente. Viene svolto un test di Moran sui residui
del modello OLS per verificare la presenza o meno di autocorrelazione spaziale
residua. In caso di accettazione dell’ipotesi di assenza di autocorrelazione si seleziona
il modello regressivo lineare. In caso contrario, si svolgono i test dei Moltiplicatori
di Lagrange sia per il lag spaziale che per 'errore spaziale.

Se viene rifiutata I'ipotesi nulla per solo uno dei test, si seleziona il rispettivo modello.
Se in entrambi i test vengono accettate le ipotesi nulle, si stima un modello di tipo
SLX e si svolge un test di Rapporto di Verosimiglianza per verificare 'utilita di
tale modello. Nel caso in cui nei test LM si rifiutano entrambe le ipotesi nulle,
si svolgono i test LM robusti per verificare se il modello SLM e SEM risultano
entrambi plausibili. Se un solo modello tra i due non viene scartato, si seleziona quel
determinato modello. Se entrambi non vengono scartati, si seleziona il modello pit
significativo secondo i test oppure si applica un modello SAC che tenga conto sia
del lag spaziale che dell’errore spaziale. In ultimo, se vengono accettate entrambe
le ipotesi nulle, il modello da preferire non e chiaro. In questo caso si valuta la
possibilita di selezionare il modello pitu significativo con i test LM non robusti,
cambiare procedura di selezione o di utilizzare dei modelli spaziali non SAR.

La procedura di prima fase & rappresentata nella figura 4.1.

2. La seconda fase ¢ opzionale e ha l’obiettivo di valutare se un modello spa-
ziale piu complesso puo risultare piu adeguato rispetto a quello selezionato in prima
fase. Questa fase puo essere svolta soltanto se non ¢ stato selezionato il modello di
regressivo lineare in prima fase. In modo analogo a quanto visto in prima fase, si
svolge un test di Moran sui residui del modello corrente per verificare la presenza di
autocorrelazione spaziale residua. Se viene indicata 1’assenza di autocorrelazione
spaziale, il modello corrente viene selezionato e sara quello che verra impiegato
nell’analisi. Altrimenti, si dovranno svolgere test addizionali.

Ad esempio, si possono svolgere i Test dei Moltiplicatori di Lagrange sui residui del
modello corrente per valutare D'efficacia di un modello con pit parametri spaziali.
Il vantaggio consisterebbe nel non dover stimare ulteriori modelli. Nella maggior
parte dei software statistici non sono presenti delle implementazioni dei test LM per
tali modelli. Per questo motivo si preferisce spesso svolgere dei Test di Rapporto di
Verosimiglianza tra il modello corrente e uno pit complesso. Il processo di selezione
termina quando non € piu presente autocorrelazione spaziale residua.
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Y=Xp+pWy+e
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Figura 4.1. Forward Stepwise di Prima Fase
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Capitolo 5

Applicazione

5.1 Dataset

Il dataset in questione e costituito da 21742 osservazioni di immobili di Madrid sulla
base di 57 variabili descrittive originarie. I dati sono stati collezionati tramite la
tecnica del Web Scraping esaminando gli annunci web provenienti dai piu noti portali
immobiliari spagnoli. Il periodo di riferimento degli annunci ¢ il mese di marzo
dell’anno 2020. E’ possibile, inoltre, recuperare il dataset di partenza scaricando
I’apposito file in formato CSV dalla piattaforma Kaggle al sito:

https://www.kaggle.com/datasets/mirbektoktogaraev/madrid-real-estate-market

L’obiettivo dell’analisi € quello di costruire dei modelli statistici capaci di prevedere
accuratamente il prezzo di vendita degli immobili usufruendo dell’informazione con-
tenuta nelle caratteristiche interne ed esterne alla casa. Al fine del raggiungimento
di tale scopo, si proporranno dei modelli parametrici e non-parametrici per I’appren-
dimento supervisionato e si metteranno a confronto tra loro attraverso I'utilizzo di
indicatori di accuratezza appositi. Distingueremo, inoltre, tra modelli spaziali e non
seguendo le indicazioni presentate a livello teorico nei capitoli precedenti.

In questo contesto risulta di particolare importanza 'ottenimento di un dataset fles-
sibile per 'applicazione dei diversi modelli e costituito da dati fedeli alla controparte
reale. I dati raccolti risultano infatti spesso incompleti o ridondanti, per questo
motivo diviene necessaria un’attenta analisi preliminare volta a rendere il dataset
completo e facile da gestire.

Al fine di ottenere un’analisi che permetta di sfruttare al meglio 'utilizzo delle
variabili spaziali e dei conseguenti modelli, prenderemo in considerazione soltanto i
dati relativi ai 6287 immobili che possiedono un indirizzo di locazione preciso.

Descrizione delle Variabili

Dall’analisi escludiamo dapprima le variabili identificative generiche dell’immobile e
le variabili che presentano soli valori mancanti. A seguito di questa eliminazione
preliminare rimangono a disposizione 43 variabili.

Le variabili sono state catalogate con un sistema che prevede la differenziazione in
base alla loro natura quantitativa o qualitativa e alle modalita che esse assumono.
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Tenendo conto di questo, le descriviamo individualmente nel seguito:

VARIABILI QUANTITATIVE:

Continue:

Prezzo di Vendita: prezzo con cui I'immobile & stato messo in vendita sul
portale immobiliare. Essendo la variabile di interesse, avra il ruolo di variabile
dipendente nei modelli di regressione.

Prezzo di Vendita per Area: prezzo di vendita dell’immobile al metro quadro.

Prezzo di Affitto: canone di locazione consigliato dai proprietari dell’immobile
o dall’agenzia immobiliare di riferimento.

Prezzo del Parcheggio: prezzo del parcheggio se non incluso nel prezzo di
vendita. L’inclusione del parcheggio nel prezzo di vendita & determinata dalla
variabile binaria apposita.

Superficie Costruita: numero di metri quadri della casa. Comprende lo spazio
interno ed esterno all’abitazione, compresi i muri interni e condivisi. I muri
condivisi, i balconi, i terrazzi, i parcheggi e, in generale, tutti gli spazi esterni ai
muri perimetrali vengono conteggiati in maniera ridotta. La superficie costruita
corrisponde nel sistema di misurazione italiano alla superficie commerciale.

Superficie Utile: numero di metri quadri della casa. Comprende lo spazio
interno al perimetro abitativo, esclusi i muri interni ed esterni. Gli spazi che
fanno parte della superficie utile sono conteggiati rispettando le dimensioni
reali. La superficie utile & sempre uguale o inferiore alla superficie costruita e
corrisponde nel sistema di misurazione italiano alla superficie calpestabile.

Superficie Coltivabile: numero di metri quadri della casa. Comprende lo spazio
esterno al perimetro abitativo che puod essere adibito alla coltivazione.

Discrete:

Anno di Costruzione: anno in cui 'abitazione ¢ stata costruita. Nel caso di
appartamenti situati in condominii, si fa riferimento all’anno di costruzione
dell’edificio. Non si tiene conto di eventuali ristrutturazioni.

Numero di Bagni

Numero di Piani: numero di piani di cui & composta ’abitazione. Nel caso in
cui sia presente un piano terra, anch’esso viene conteggiato.

Numero di Stanze: numero delle stanze abitabili che compongono I'immobile.
Nel conteggio sono comprese le camere da letto, i soggiorni, le sale da pranzo
e le cucine. D’altra parte, vengono esclusi tutti gli altri tipi di ambiente come
i bagni, gli studi, le mansarde, i ripostigli, le lavanderie e tutti gli spazi esterni
alle mura perimetrali. Si segnala che, con questo sistema di misura, per gli
appartamenti studio e per gli attici ad un unico ambiente, il numero di stanze
conteggiato risulta pari a 0.
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VARIABILI QUALITATIVE:

Ordinali:

o Certificazione Energetica: punteggio da A a G per misurare lefficienza energe-
tica dell’immobile. Risulta possibile che la determinazione della certificazione
energetica sia in corso al momento dell’inserimento dell’annuncio nel portale
immobiliare o che I'immobile ne sia esente.

e Piano d’Ingresso: numero del piano d’accesso principale all’abitazione. L’entra-
ta puo essere collocata anche sul mezzanino o su piani interrati o semiinterrati.

Nominali Multicategoriche:

e Tipo di Casa: tipologia dell’abitazione. Si distingue in appartamento, casa
indipendente/villa, casa semi-indipendente/bifamiliare e attico.

e Variabili di Posizione: segnalano la collocazione geografica della casa

— Titolo: variabile composita contenente il tipo di abitazione e la locazione
delllimmobile piu specifica conosciuta; quest’ultima pud comprendere il
nome del quartiere, I'indirizzo o, alternativamente, una denominazione
equivalente.

— Sottotitolo: nome del quartiere e della citta.

— Indirizzo Completo: nome della via ed eventuale numero civico.
— Indirizzo: nome della via senza numero civico.

— Numero Civico

— Identificativo della Zona: variabile composita contenente il nome del
quartiere con il corrispettivo numero identificativo, il prezzo medio al
metro quadro degli immobili nel quartiere di riferimento, il nome del
distretto e il corrispettivo numero identificativo.

Nominali Binarie:

e Variabili Caratterizzanti dell’Immobile:
possono essere definite come variabili del tipo:

{1 se I'immobile 7 & definito dalla caratteristica j
ij=

0 altrimenti

— Accessibilita: indica se ’abitazione sia accessibile al momento dell’inseri-
mento dell’annuncio nel portale immobiliare.

— Esterno: indica se ’abitazione sia collocata in uno spazio esterno.

— Indirizzo Nascosto: indica se 'indirizzo abitativo viene tenuto, anche
solo parzialmente, nascosto. L’assenza della via o del numero civico
nell’annuncio comporta a rendere ’indirizzo nascosto.

— Necessaria Ristrutturazione: indica se ¢ necessario eseguire una ristruttu-
razione al fine di rendere la casa agibile.
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— Nuova Costruzione: indica se I’edificio risulta essere una nuova costruzione.
N Cost d Pedifi 1t t
In tal caso, si puo associare alla casa ’anno di costruzione risalente al
)
periodo di riferimento dell’annuncio.

— Parcheggio Incluso nel Prezzo: indica se il prezzo del parcheggio sia
incluso nel prezzo di vendita della casa. Se il parcheggio non & incluso nel
prezzo viene indicato il prezzo del parcheggio separatamente dal prezzo
di vendita tramite 'apposita variabile.

— Piano Interrato: indica se il piano d’ingresso all’abitazione ¢ interrato o
semi-interrato.

— Variabili di Orientamento:
segnalano 'orientamento delle facciate dell’immobile
% Orientamento Nord
x Orientamento Sud
* Orientamento Est
* Orientamento Ovest

o Variabili di Presenza/Assenza:
sono definibili come:

{1 se I'immobile ¢ presenta l'attributo j
ij=

0 altrimenti

— Aria Condizionata

— Armadio a Muro

— Ascensore

— Balcone

— Giardino

— Parcheggio

— Piscina

— Ripostiglio

— Riscaldamento Autonomo
— Riscaldamento Centralizzato
— Terrazzo

— Zona Verde

5.2 Pre-Processing

Il pre-processing dei dati e il processo preliminare dei dati costituito da una serie di
operazioni che precedono 'analisi. E’ costituita da fasi di manipolazione e pulizia
dei dati al fine di garantire un elevato livello di prestazioni dei modelli. Durante
questo processo si aggiustano gli errori nella struttura del dataset e nei dati stessi
(dati anomali, contaminati, inconsistenti, invalidi e duplicati). Si vanno quindi a
gestire adeguatamente le variabili per fare in modo che abbiano validita logica e che
siano correttamente codificate. Infine, si svolge il trattamento dei dati mancanti.
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5.2.1 Gestione delle Variabili

Poiché si e interessati a prevedere il prezzo di vendita degli immobili, non si tie-
ne conto del prezzo di vendita per area e del prezzo di affitto. Avendo inoltre a
disposizione 1’eventuale prezzo del parcheggio, se presente, e il relativo indicatore
di inclusione del prezzo del parcheggio in quello di vendita, si decide di includere
nel prezzo di vendita anche il prezzo del parcheggio. A tal fine, se il parcheggio
di un’abitazione non ¢ incluso nel prezzo di vendita, verra segnalato dall’apposita
variabile indicatrice e si andranno a sommare i due prezzi che raffigureranno nel solo
prezzo di vendita. La variabile sul prezzo del parcheggio e il corrispettivo indicatore
vengono infine esclusi dal dataset in quanto ridondanti.

Si vogliono poi trasformare le variabili qualitative ordinali e nominali multicate-
goriche in modo da avere una struttura piu semplice e piu facile da trattare nei
modelli. Per ricodificare queste variabili sono state applicate delle analisi esplorative
specifiche che sono state inserite in appendice.

Abbiamo reso la variabile relativa alle certificazione energetica binaria. In particolare,
le classi energetiche A, B e C sono considerate come classe alta, mentre le classi da
D a G, le classi in fase di determinazione e ’esenzione dalla classe energetica sono
state etichettate come classe bassa. In particolare, la variabile indichera il valore 1
se la certificazione energetica € bassa e 0 altrimenti.

La variabile ordinale piano d’ingresso ¢ stata trasformata in quantitativa discreta.
A ciascuna categoria € stato associato il numero del piano corrispondente. Un preciso
valore e stato associato anche ai piani d’ingresso speciali: il mezzanino corrisponde
ad un valore pari a 0,5 in quanto ¢ il piano collocato tra il primo piano e il piano
terra, quest’ultimo associato al valore 0, il seminterrato ¢ rappresentato invece dal
valore -0,5 e il piano interrato da -1.

Per la variabile che indica il tipo di immobile, ¢ stata integrata 1’informazione con-
tenuta nella variabile titolo. Si sono ottenute inizialmente 4 diverse categorie. Piu
specificatamente si ¢ distinto tra appartamenti, case indipendenti, semi-indipendenti
e attici. Appartamenti e case semi-indipendenti sono stati poi uniti in quanto non si
sono osservate differenze significative sul prezzo di vendita.

Le variabili di posizione vengono impiegate per estrarre delle informazioni spaziali
che saranno utilizzate successivamente. Dall’identificativo della zona viene estratto il
numero identificativo del distretto che verra utilizzato in un particolare tipo di analisi.
Prendendo I’indirizzo abitativo si andranno invece a ricercare le corrispondenti coor-
dinate geografiche. Vedremo piu dettagliatamente tale procedimento. Eliminiamo
infine dal dataset queste variabili.

Senza perdita di specificita, uniamo la variabile indicatrice per il balcone con quella
per il terrazzo e la variabile per il giardino con quella per la zona verde. Negli
annunci immobiliari i termini che si possono trovare per gli spazi verdi o esterni
sono infatti spesso interscambiabili. La variabile binaria che fa riferimento alla
presenza o assenza del riscaldamento autonomo ha significato esattamente opposto
alla variabile che indica la presenza o ’assenza del riscaldamento centralizzato. Per
evitare ridondanza si esclude quest’ultima dal dataset. Anche la variabile che indica
se il piano d’ingresso e sotto il pianterreno risulta ridondante per la presenza della
variabile piano d’ingresso.

In questa fase sono state cosi eliminate 15 variabili e ne rimangono a disposizione 28.
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Variabili di Distanza

Le variabili di distanza indicano la lontananza degli immobili rispetto ai luoghi
d’interesse della citta. Queste informazioni non sono incluse nell’insieme di dati
originario. Abbiamo introdotto queste variabili al fine di fornire delle informazioni
aggiuntive ed esterne a ciascuna abitazione che siano caratteristiche del luogo in cui
¢ collocato I'immobile. Questo approccio ¢ in linea con la volonta di utilizzare dei
metodi spaziali per prevedere il prezzo degli immobili. Queste informazioni esterne
al dataset contribuiscono a rendere le previsioni piu accurate.

Per calcolare le distanze ¢ stato necessario utilizzare degli strumenti geografici. In
particolare, si € utilizzato il software ArcGIS e OpenStreetMap. ArcGIS & un sistema
informativo geografico prodotto dall’azienda Esri. Viene usato per la creazione di
mappe, la loro analisi e, piu in generale, I’'uso statico e interattivo di tali mappe;
altri utilizzi consistono nella compilazione di dati geografici, la condivisione di infor-
mazioni geospaziali e la loro gestione attraverso database. OpenStreetMap (OSM)
¢ invece un progetto collaborativo finalizzato alla creazione di mappe del mondo a
contenuto libero.

Il processo che prevede il calcolo delle distanze ¢ articolato in tre fasi:

1. Geolocalizzazione degli Immobili: gli indirizzi delle abitazioni vengono geo-
codificati in punti sulla mappa. Ciascun punto sara costituito dalle due coordinate
geografiche, ovvero dalla longitudine e dalla latitudine. Per la geocodifica si utilizza
I’ArcGIS World Geocoding Service offerto dall’omonima azienda.

2. Geolocalizzazione dei Luoghi d’Interesse: si estraggono le coordinate geogra-
fiche dei luoghi d’interesse accedendo al database aperto di OpenStreetMap. Le
informazioni sono ricavate specificando degli appositi tag associati agli elementi di
una citta. Ogni tag € composto da una chiave che indica la categoria di appartenenza
delle strutture e da un valore che specifica la sottocategoria.

3. Calcolo delle Distanze: si calcolano le distanze in linea d’aria tra tutti gli
immobili e tutti i luoghi d’interesse. Successivamente si estraggono le distanze
minime tra ciascun immobile e ogni tipologia di luogo d’interesse. La metrica di
riferimento per il calcolo & la distanza di Haversine in metri che misura la lontananza
tra due punti in una sfera ed ¢ definita come:

— Ao — A
dgay = 2r arcsin <\/sin2 (W) + cos 1 oS o sin? (221)> (5.1)

dove r ¢ il raggio della sfera, 1 e g sono rispettivamente la latitudine del primo
e del secondo punto, A\; e A2 sono rispettivamente la longitudine del primo e del
secondo punto.

Un metodo di misurazione piu preciso si baserebbe sulla formula di Vincenty per il
calcolo delle distanze tra punti di uno sferoide oblato. Si ¢ deciso di non utilizzare
la distanza di Vincenty in quanto le misurazioni risulterebbero leggermente piu
accurate a fronte di un costo computazionale decisamente maggiore. Le differenze
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tra le distanze di Haversine e Vincenty per la Spagna sono generalmente nell’ordine
dei centimetri (fino ad un massimo di 1 metro) per grandezze fino al chilometro. Per
il nostro tipo di analisi queste differenze sono trascurabili.

I luoghi di interesse che sono stati scelti hanno lo scopo di descrivere i punti
focali di una citta, le comodita e le strutture che aiutano a rendere una zona ambita
o da evitare. La vicinanza con i luoghi d’interesse comportera a modificare il prezzo
di un’immobile. Infatti, se un immobile & situato in una zona della citta con molte
comodita, al netto delle altre caratteristiche, il prezzo di vendita salira, in caso
contrario, se un immobile non ¢ situato in una zona attrattiva o € vicino a edifici
sgradevoli, il suo prezzo diminuira.

Abbiamo raggruppato i luoghi di interesse in 6 macrocategorie:

o Prima Necessita / Sanita: sono le strutture di base per il sostentamento e la
salute dell’individuo

— Supermercato
— Ospedale

— Farmacia

e Finanza: sono gli edifici dove avvengono le transazioni economiche dell’indivi-
duo che comprendono in genere il ritiro e il deposito di denaro

— Banca
— Ufficio Postale

e Educazione: sono gli edifici legati all’istruzione scolastica

— Universita
— Scuola dell’Obbligo

— Scuola dell’Infanzia

e Trasporti: sono i luoghi dove avvengono i principali spostamenti con mezzi di
trasporto di una citta

— Stazione dei Treni
— Stazione dei Bus

— Aeroporto
e Intrattenimento: sono i luoghi dove € possibile svolgere attivita ludico ricreative

Palestra

— Parco

Stadio

— Discoteca

Cinema
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— Biblioteca
e Turismo: sono i posti che hanno valenza turistica e culturale

— Edificio Storico

— Attrazione Turistica

Una descrizione esaustiva dei luoghi d’interesse che sono stati presi in considerazione
si puo trovare sul portale web di OpenStreetMap che indicheremo in bibliografia.

5.2.2 Errori nei Dati

In fase di analisi esplorativa preliminare si € potuto osservare che alcune variabili
binarie presentano una sola modalita osservata. Altrimenti, per quella variabile il
dato risulta in alternativa mancante. Il motivo di questo avvenimento puo essere
legato ad un’errata codificazione delle variabili in questione.

Analizzando i valori osservati per quelle variabili e le relative percentuali di dati
mancanti sul totale delle osservazioni, emerge che la mancanza dei dati possa essere
dovuta a motivi deterministici. Infatti, quando i valori sono presenti, questi indicano
sempre la presenza di un particolare attributo dell’immobile. E’ ipotizzabile allora
che la mancanza del dato corrisponda all’assenza di quello specifico attributo.

A supporto di questa tesi vi & la struttura stessa degli annunci immobiliari da cui
sono state ricavate le informazioni sugli immobili. Non inserire una caratteristica
importante della casa € infatti sinonimo solitamente di mancanza della stessa. Le
percentuali di dati mancanti sul totale delle osservazioni sono oltretutto plausibili
con l'ipotesi di assenza degli attributi.

Le variabili a cui abbiamo fatto riferimento sono:

e Aria Condizionata

¢ Armadio a Muro

e Balcone e Terrazzo

e Giardino e Zona Verde
e Piscina

e Ripostiglio

Decidiamo quindi di sostituire i valori mancanti con 'indicazione di assenza degli
attributi. La sostituzione viene fatta a livello dell’intero dataset senza distinguere
tra set di training e set di test. Il motivo di questo ¢ supportato dal fatto che il
procedimento impiegato per queste variabili & di tipo deterministico. Di conseguenza,
I'imputazione o ’eliminazione di eventuali dati non causerebbe problemi di data
leakage, ovvero di invalidita dei modelli a seguito dell’utilizzo di informazioni esterne
al dataset di training.

Si segnala infine che la variabile relativa all’accessibilita dell’immobile non presenta
invece una percentuale di dati mancanti plausibile. Nel solo 18, 9% dei casi I'immobile
& segnalato come accessibile. La causa della mancanza di informazione non e quindi
attribuibile all’impossibilita di accedere all’immobile. Per questo motivo si esclude
tale variabile dal dataset.
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5.2.3 Dataset Splitting

Dividere il dataset di partenza in training set e test set € una procedura fondamentale
al fine di costruire dei modelli previsivi. Se mentre per 'applicazione di modelli
statistici descrittivi non e di interesse verificare le capacita predittive, per i modelli
statistici previsivi & necessario testare il modello su nuovi dati.

Per mantenere un buon bilanciamento tra capacita descrittive e previsive si decide
quindi di dividere il dataset in training e test con una percentuale di osservazioni
sul totale pari rispettivamente all’l80% e al 20%. Questo rapporto di suddivisione (o
split ratio) ¢ adeguato alla dimensione campionaria osservata.

La teoria che regola il rapporto di suddivisione consiglia infatti di aumentare progres-
sivamente la percentuale di osservazioni da includere nel training set al crescere del
numero di osservazioni. La divisione del dataset ¢ stata realizzata stratificando per
la variabile risposta in modo da bilanciare i valori osservati dei prezzi nel training set
con quelli del test set. Poiché la variabile risposta ¢ quantitativa, la stratificazione ¢
avvenuta in base ai decili della distribuzione.

Il training set servira quindi per costruire ed allenare i modelli previsivi, mentre il
test set servira per stimare l'errore di previsione senza distorsione. Non viene invece
introdotto un vero e proprio set di validazione. Come accennato nella parte teorica,
utilizzeremo una processo di cross-validation per convalidare i modelli. Procedura
che permette di ottenere dei risultati previsivi migliori rispetto alla consueta divisione
del dataset in tre parti (training, validation e test).

5.2.4 Trattamento dei Dati Mancanti

Il trattamento dei dati mancanti & una delle parti principali e piu delicate dell’intera
analisi. Il numero di dati mancanti cambia notevolmente a seconda della variabile
presa in esame. Si nota che solo le variabili esplicative presentano valori mancanti,
in quanto la variabile risposta risulta completamente osservata.

Per evitare problemi di data leakage, si imputeranno separatamente i dati per il
training e il test set. Prima i dati saranno infatti imputati per il training, poi, in
un secondo momento, si andranno a riprodurre gli stessi metodi di imputazione
utilizzati sul training set per imputare i dati anche sul test set.

Prima di procedere ¢ importante verificare il tipo di dati mancanti. Non potendo
verificare I'ipotesi di MAR contro l’alternativa di MNAR, & necessario fare riferi-
mento alla conoscenza che ¢ in nostro possesso delle variabili e del criterio con cui
queste sono state misurate. Le variabili che andremo ad imputare sono relative a
caratteristiche interne all’immobile. Per questo motivo non prenderemo in conside-
razione in questa fase le variabili di distanza. L’assenza di un dato & derivata dalla
scelta pitt 0 meno intenzionale da parte del proprietario dell’immobile (o dell’agenzia
immobiliare) di non includere nell’annuncio una specifica informazione. Il motivo
della mancanza non € quindi totalmente aleatorio, ovvero non & ipotizzabile che i
dati mancanti siano MCAR. Si pensa invece che i dati mancanti su una variabile
siano determinabili attraverso le informazioni contenute nelle altre variabili.

Una caratteristica o un attributo di una abitazione dipende infatti strettamente
dalle altre informazioni interne all’immobile stesso. Ad esempio, se un immobile ¢ un
appartamento collocato ad un piano elevato di un condominio di basso valore, allora
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sara maggiormente probabile che sia presente un ascensore e che la classe energetica
non sia alta. Per questi motivi assumeremo che i dati mancanti siano di tipo MAR.
Distinguendo quindi tra training e test set, riportiamo in tabella le variabili che
possiedono dati mancanti con le rispettive percentuali di dati mancanti sul numero
totale di osservazioni in ordine crescente:

Variabile % Train % Test % Dataset
Numero di Bagni 0,1% 0,2% 0,1%
Superficie Costruita 0,1% 0,2% 0,1%
Nuova Costruzione 2.5% 1,5% 2,3%
Ascensore 5,3% 5,7% 5,3%
Esterno 8% 7,7% 8%
Piano d’Ingresso 8, 7% 7,9% 8,5%

Certificazione Energetica | 31,9%  32,4% 32%
Riscaldamento Autonomo | 48,6%  48,2% 48,5%
Variabili di Orientamento | 52,5% 48% 51,6%
Superficie Utile 58,6%  56,4% 58,2%
Anno di Costruzione 68,9%  70,7% 69,3%
Numero di Piani 96% 95,2% 95,8%

Superficie Coltivabile 97.4%  96,9% 97,3%

Tabella 5.1. Percentuali di Dati Mancanti

Si puo osservare che alcune variabili hanno una percentuale di dati mancanti estrema-
mente elevata. La loro inclusione nei modelli potrebbe portare a distorcere la validita
dei risultati. Per questo motivo si ¢ deciso di impostare delle soglie progressive di
dati mancanti e verificare quale di queste restituisce dei risultati inferenziali migliori.
Le soglie sono state impostate in base alle percentuali di valori mancanti osservati
tra le variabili e sono pari al 5%, 25% e 50%.

Il metodo di imputazione su cui € stata svolta la verifica ¢ il predictive mean mat-
ching, mentre i modelli tramite i quali si sono misurate le capacita predittive sono il
modello di regressione lineare e il random forest con degli iperparametri comuni.
Le metriche valutate sono 'RMSE, 'MAE e I’R?. Le misurazioni sono state fatte
tramite una procedura di 10-fold cross-validation.
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I risultati previsivi sono riportati nella tabella sottostante:

Regressione Lineare Random Forest
Soglia
RMSE MAE R? | RMSE MAE R?

5 245647 147646 0,694 | 219478 127561 0,754
25 242669 144145 0,704 | 215632 121297 0,763

50 239525 144733 0,711 | 205800 118385 0,792

Tabella 5.2. Risultati per diverse Soglie di Dati Mancanti

Analizzando i risultati, si puo osservare che i modelli basati su una soglia di impu-
tazione del 50% restituiscono dei risultati sistematicamente migliori rispetto alle
altre soglie sia per il modello di regressione lineare che per il random forest. Si ¢
osservato inoltre che le variabili che sono state imputate sono sempre significative
sotto il modello di regressione lineare e risultano determinanti secondo un criterio
di importanza delle variabili per il random forest. Per ulteriori dettagli si rimanda
all’analisi in appendice.

Andiamo ora ad applicare e confrontare i vari metodi di imputazione. Si uti-
lizzano i metodi che sono stati presentati nella parte teorica. L’imputazione che
verra verificata € sia singola che multipla. In particolare, per 'imputazione multipla
si ¢ scelto un numero di dataset da imputare pari a 5. Il confronto avviene attraverso
gli I-Scores nella forma di Density Ratio con diversi numeri di proiezioni aleatorie.
Ad esclusione dell’imputazione con media, moda e mediana, nella totalita dei casi
abbiamo utilizzato, sia nel caso dell'imputazione singola che multipla, la strategia di
imputazione basata sulla specificazione completamente condizionale nella versione
dell’algoritmo con equazioni concatenate (MICE).

La sequenza di imputazione delle variabili € in ordine crescente rispetto alla per-
centuale di dati mancanti sul totale delle osservazioni. Per la fase di imputazione
e stata presa in considerazione anche la variabile risposta. Come segnalato infatti
dallo studio di Evangelos Kontopantelis, la variabile risposta puo essere utilizzata
nel modello di imputazione senza andare a distorcere i risultati dei modelli.

Una problematica che sorge con I'imputazione multipla all’interno della nostra appli-
cazione consiste nel fatto che i modelli di regressione che impiegheremo non sono
tutti parametrici, per questo motivo non risulta chiaro come svolgere il pooling
dei risultati. A tal fine si decide di utilizzare per ’analisi di regressione la sola
imputazione singola prescelta, mentre I'imputazione multipla viene impiegata per
valutare la consistenza dei metodi di imputazione confrontati tramite I-Scores.

Si riportano nella tabella 5.3 i valori degli I-Scores in termini relativi (il metodo
di imputazione con score piu elevato ha valore 0, mentre gli altri mostreranno un
valore inferiore) sia per I'imputazione singola che per quella multipla:
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Imputazione Singola Imputazione Multipla
Metodo Numero di Proiezioni Numero di Proiezioni
5 10 20 50 5 10 20 50
MMM -2,514 -2291 -2,073 -2,163 Non Valutabile

LM+LOG |-1,879 -2,149 -1,610 -1,756 |-2,303 -1,905 -1,830 -1,723
SR+LOG | -1,295 -1,162 -0,750 -0,681 | -1,663 -1,054 -1,074 -0,998

PMM+LOG 0 -0,098 -0,484 -0,533 0 -0,688 -0,757  -0,808

PMM 0,325 -0,680 -0,605 -0,190 | -0,733 -0,342 -0,579  -0,405
CART | -0,225 0 0 0 |-0,562 -0,209 -0,256 -0,202
RF 0,417 -0,255 -0,196 -0,286 | -0,543 0 0 0

Legenda: MMM: Media, Moda e Mediana - LM+LOG: Regressione Lineare e Logistica
SR+LOG: Regressione Stocastica e Logistica - PMM+LOG: Predictive Mean Matching
e Regressione Logistica - PMM: Predictive Mean Matching - CART: Albero Decisionale
RF: Random Forest
Tabella 5.3. I-Scores

Dai punteggi di imputazione il metodo basato su media, moda e mediana €, come ci
si aspettava, quello che restituisce i risultati peggiori. Infatti, questo metodo puo
distorcere significativamente la distribuzione originaria dei dati.

I metodi basati sulla regressione lineare e stocastica (per le variabili quantitative)
uniti alla regressione logistica mostrano anch’essi delle performance non desiderabili.
In particolare, la regressione lineare mostra dei risultati che non si allontanano
molto dall’imputazione tramite media, moda e mediana; la regressione stocastica
si dimostra in tutti i casi migliore di quella lineare, ma sistematicamente peggiore
dei metodi rimanenti. L’utilizzo combinato del predictive mean matching con la
regressione logistica & preferibile se si considerano solo 5 proiezioni aleatorie sia per
I'imputazione singola che multipla. Considerando un numero superiore di proiezioni
tale metodo presenta dei risultati peggiori e non consistenti. Lo score per il metodo
di imputazione basato sul solo predictive mean matching ha invece un andamento
altalenante. I migliori risultati sono dati dai due modelli basati sugli alberi. L’albe-
ro decisionale ¢ il preferibile per quanto riguarda l'imputazione singola, mentre il
random forest per 'imputazione multipla. 11 random forest &, di conseguenza, piu
consistente del singolo albero decisionale quando si imputano piu dataset. I punteggi
piu elevati dell’albero decisionale per I'imputazione singola sono da associare in
parte alla sua elevata variabilitd per costruzione. Si decide quindi di imputare i dati
attraverso il random forest. Lo stesso metodo di imputazione viene applicato sul
test set con la differenza che non viene presa in considerazione la variabile risposta
per la stima dei modelli.
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5.3 Analisi Esplorativa

L’analisi esplorativa € un approccio all’analisi per avere una prima idea sui dati
riassuemendo le caratteristiche principali del fenomeno d’interesse, spesso utilizzando
grafici statistici e altri metodi di visualizzazione dei dati. Si tratta infatti di una fase
preliminare alla modellazione, tramite la quale si individua la distribuzione empirica
dei dati e i rapporti che caratterizzano le variabili.

Abbiamo diviso Ianalisi esplorativa in esplorazione standard (EDA) ed esplorazione
spaziale (ESDA). Le analisi che illustreremo fanno riferimento a sole alcune variabili
statistiche, per un analisi completa si rimanda all’appendice.

5.3.1 Esplorazione Standard
Nell’esplorazione standard si analizzano principalmente le distribuzioni delle variabili.
A tal fine impostiamo ’analisi dividendola tra univariata e bivariata.

Analisi Univariata

Si vanno ad analizzare le statistiche sommarie delle variabili e le loro distribuzioni.
In questo senso riportiamo alcuni grafici relativi alla variabile risposta:
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Figura 5.1. Boxplot, Istogramma e Q-Q plot per il Prezzo di Vendita

Il prezzo di vendita degli immobili varia da un minimo di 42.000 € ad un massimo
di 7.525.000 €, con frequenze assolute molto elevate tra i 200.000 € e i 500.000
€. 1l prezzo medio di vendita & di 460.105 € e quello mediano di 321.000 €. Dal

boxplot e dall’istogramma si evince che sia presente una evidente asimmetria positiva,
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confermata dal fatto che la media sia superiore alla mediana. Il q-q plot suggerisce
che non sia possibile assumere la normalita per la distribuzione.

Analizziamo ora il prezzo di vendita con la sua trasformata logaritmica:
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Figura 5.2. Boxplot, Istogramma e Q-Q plot per il logaritmo del Prezzo di Vendita

Si puo notare dalla figura che la distribuzione osservata e piu simile a quella di una
normale, ma le code risultano pero ancora pesanti.

Nella figura 5.3 si possono poi osservare le distribuzioni delle altre variabili quantita-
tive. Si nota che nessuna delle variabili sembra seguire una distribuzione normale.
In particolare, la variabile Piano d’Ingresso possiede una distribuzione simmetrica
con code pesanti, mentre tutte le altre distribuzioni hanno un’asimmetria positiva.
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Figura 5.3. Istogrammi (o Diagrammi a Barre) e Boxplot delle Variabili Quantitative

Analisi Bivariata

Nell’analisi esplorativa bivariata si prende in considerazione due variabili per volta. Si

mostrano allora nella figura 5.4 i diagrammi di dispersione delle variabili quantitative.

Il colore dei grafici varia in base all’intensita della correlazione lineare tra le variabili
prese a due a due. Il colore rosso indica una correlazione lineare forte (> 0,7), il
giallo una correlazione lineare moderata (> 0, 3) e in verde troviamo una correlazione
debole (< 0,3).

Tra tutte le variabili & presente una correlazione lineare positiva. Il Prezzo di Vendita
e correlato fortemente con la Superficie Costruita e il Numero di Bagni, piu leggera
invece ¢ la correlazione con il Numero di Stanze e il Piano d’Ingresso. Anche tra la
Superficie Costruita e il Numero di Bagni e presente una forte correlazione, mentre,
tra le altre variabili, la correlazione risulta modesta o leggera.
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Diagrammi Multipli
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Figura 5.4. Diagrammi a Dispersione

Visualizziamo poi la distribuzione congiunta tra il Prezzo di Vendita e due
variabili categoriche attraverso dei boxplot condizionati alle modalita assunte.

Prezzo e Tipo di Casa Prezzo e Certificazione Energetica
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Figura 5.5. Boxplot di Variabili Categoriche in base al Prezzo di Vendita
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Il Tipo di Casa influenza notevolmente il Prezzo di Vendita. Le case indipendenti
sono in media gli immobili piu costosi, seguno poi gli attici e infine gli appartamenti.
Per la Certificazione Energetica le differenze di prezzo sono meno evidenti. Le
abitazioni con classe elevata sono associate a prezzi piu elevati, mentre una classe
bassa comporta dei valori di prezzo leggermente pitu bassi.

5.3.2 Esplorazione Spaziale

Nell’analisi esplorativa spaziale andiamo ad osservare se intuitivamente & presente
I’autocorrelazione spaziale tra i prezzi delle abitazioni. In primo luogo dividiamo la
variabile prezzo di vendita in quartili e mostriamo sulla mappa stradale di Madrid
la posizione delle abitazioni in base alla nuova variabile cosi trasformata:

Prezzo di Vendita
¢ Basso
¢ |edio Basso
*  Medio Alto
Alto

Figura 5.6. Mappa dei Prezzi di Vendita

Si puo notare che i prezzi di vendita si presentano in modo eterogeneo sulla mappa;
in particolare, gli immobili piu cari sono situati nella zona centrale e a nord-ovest
della citta, mentre quelli piu economici si trovano soprattutto nel sud di Madrid.
Questo grafico suggerisce quindi che vi sia una evidente forma di autocorrelazione
spaziale.
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Successivamente, si deve cercare di determinare la struttura di vicinanza pil idonea.
Dovendo trattare con unita spaziali di punto non diviene naturale utilizzare delle
strutture di vicinanza basate sulla contiguita spaziale. Risulta quindi preferibile una
struttura basata sulla distanza. Tale struttura ¢ specificata in base ad un numero
fissato di vicini o ad una fissata distanza soglia.

Non esiste un criterio univoco per decidere il numero £ di vicini o la distanza soglia
d. Questi valori devono necessariamente dipendere dal numero di unita del dataset.
A questo fine calcoliamo il coefficiente di correlazione di Pearson p per il prezzo di
vendita a vari livelli di k. Un valore | p |> 0,7 indica una correlazione lineare forte,
0,3 <| p |< 0,7 una correlazione lineare moderata e | p |< 0,3 una correlazione
lineare debole. Mostriamo ’andamento della correlazione lineare in un diagramma:

06

Correlazione

0.2

0 100 200 300
k-esimo nearest neighbour

Figura 5.7. Andamento della Correlazione Lineare in base al Numero dei Vicini k

Dalla figura si osserva un valore dell’indice consistentemente superiore a 0,3 in
corrispondenza di un numero di vicini fino a 75. Decidiamo quindi di impostare
k = 75. In maniera analoga si & visto che & possibile ottenere un numero medio di
vicini per abitazione approssimabile a 75 per una distanza soglia d di 800 metri.

Nel decidere quale tipologia di struttura di vicinanza utilizzare, si tiene conto di
alcune caratteristiche determinanti. Sono presenti alcune abitazioni distanti dalle
altre che vengono rappresentate dai dei punti isolati sulla mappa. Nel caso si utilizzi
un numero di vicini fissato k£, non saranno presenti unita senza vicini. Al contrario,
fissata una distanza d, si & osservato che alcune unita non hanno alcun vicino. Per
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fare in modo che ogni unita abbia almeno un vicino bisognerebbe fissare una distanza
superiore ai 3000 metri, ma il numero medio di vicini aumenterebbe a dismisura.
In ogni caso molte unita hanno un numero di vicini eccessivamente basso o elevato.
D’altra parte, se viene fissato un numero di vicini, le stime dei prezzi degli immobili
isolati saranno necessariamente influenzati anche da abitazioni molto distanti.

In ogni caso, fissare il numero di vicini permette sia di controllare il coefficiente
di correlazione osservato di Pearson in maniera diretta, sia di poter impiegare una
struttura di vicinanza analoga anche sul dataset di test. In definitiva & quindi
preferibile utilizzare un numero fissato di vicini.

La matrice dei pesi spaziali corrispondente alla struttura di vicinanza e determinata
dai valori inversi delle distanze di Haversine, aggiustate in modo tale da evitare
valori invalidi. Specificatamente, prima di invertire le distanze, a queste e stato
aggiunto un termine costante pari ad 1 metro. Ciascun peso spaziale viene poi
successivamente standardizzato per riga.

Visualizziamo ora il Diagramma di Moran sul prezzo di vendita:

Diagramma di Moran
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Prezzo di Vendita con Lag Spaziale (WY)
1e+06

0e+00

Prezzo di Vendita ()

Figura 5.8. Diagramma di Moran sul Prezzo di Vendita

I prezzi degli immobili sono sull’asse orizzontale e le loro controparti spazialmente
ritardate sono sull’asse verticale. Le osservazioni nel grafico sono sbilanciate e si
concentrano soprattutto tra il primo e il terzo quadrante indicando una tendenziale
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presenza di autocorrelazione positiva. Si puo notare che la forma della nuvola di
punti & influenzata dalla presenza di diversi outliers nel primo quadrante. Nel terzo
quadrante i punti sono molto meno sparsi e finiscono per raggrupparsi.

In generale, casi "High-High" sono maggiormente presenti dei "Low-Low", di con-
seguenza, ci sono piu abitazioni costose all’interno di zone altolocate rispetto ad
abitazioni di prezzo basso in zone economiche.

L’indice di Moran osservato (corrispondente alla pendenza della retta di regressione
nel diagramma di Moran) associato alla matrice dei pesi spaziali & pari a I = 0, 561
e il p-value relativo alla statistica test ottenuto tramite simulazioni Monte Carlo
¢ prossimo a 0. L’indice di Geary ¢ invece pari a C' = 0,403 e il p-value ¢ di 0,02.
Entrambi gli indici testimoniano quindi, come anticipato, una sostanziale presenza
di autocorrelazione spaziale positiva all’interno del dataset che viene confermata
dal livello di significativita dei rispettivi test statistici (fissando una soglia di si-
gnificativita del 5%). A livello globale cio significa che i valori dei prezzi degli
immobili tenderanno a raggrupparsi spazialmente sulla mappa di Madrid con una
certa consistenza.

5.4 Analisi di Regressione

5.4.1 Analisi Classica

Si vanno a confrontare le varie tecniche presentate nel paragrafo 3.1 per introdurre
le variabili spaziali che hanno la funzione di sottomercati spaziali.

In tal senso si considerano dapprima le aree amministrative: la citta di Madrid e
divisa in 21 distretti i quali sono suddivisi a loro volta in 131 quartieri (o barrios).
Si e verificato che 1'utilizzo del quartiere come variabile spaziale comporta un aumento
eccessivo del costo computazionale, nonché un aumento delle difficolta interpretative
dei modelli dovuto al numero elevato di variabili dummy da introdurre. Inoltre, il
quartiere non risulta essere un’entita con un potere amministrativo locale adeguato.
Di conseguenza, senza perdita di specificita, si prenderanno in considerazione i
distretti. Questi hanno una sufficiente autorita all’interno della citta e vanno a
rappresentare il livello di suddivisione territoriale immediatamente successivo a
quello delle province.

Per i cluster spaziali, come anticipatamente suggerito, si sono impiegati i modelli di
clustering a mistura finita con componenti Gaussiane unite al criterio di informazione
Bayesiana. In base a 7 possibili modelli selezionabili e ad un limite massimo di
25 cluster spaziali, il modello con le prestazioni preferibili € risultato essere quello
composto da 15 cluster con distribuzione elissoidale, volume costante e forma equa
(EEV). L’inizializzazione di riferimento ¢ stata creata tramite agglomerazioni casuali
per rendere i modelli piu consistenti e le variabili sono state standardizzate tramite
una decomposizione SVD.

Per ultimi, i cluster LISA di tipo Moran sono stati costruiti fissando il numero di
vicini in modo analogo a quanto visto in analisi esplorativa, sulla base pero dell’intero
dataset. In questo caso il numero di vicini considerati e pari a k£ = 100, poiché si e
osservato un indice di Pearson consistentemente superiore a 0,3 in corrispondenza di
tale valore. Il numero di vicini fissati risulta leggermente superiore al caso in cui si
consideri solo il dataset di training, dove veniva invece selezionato k = 75. Anche in



5.4 Analisi di Regressione 83

questo caso la matrice dei pesi spaziali € determinata dai valori inversi aggiustati
delle distanze di Haversine e ognuno di essi viene successivamente standardizzato per
riga. Si e quindi osservato che 1837 unita hanno autocorrelazione spaziale positiva di
tipo "High-High" e 3218 di tipo "Low-Low". Mentre 296 unita hanno autocorrelazione
spaziale negativa "High-Low" e 936 "Low-High".

Riportiamo nella tabella sottostante i confronti tra le capacita predittive del modello
di regressione lineare e del random forest con iperparametri comuni per le varie
scelte dei criteri di determinazione dei sottomercati spaziali:

Metodo

Regressione Lineare

RMSE MAE R?

Random Forest

RMSE MAE R?

Aree Amministrative | 206898 118509 0,786 | 171237 76977 0,861
Cluster Spaziali 207322 118234 0,787 | 174633 78709 0,854
Cluster LISA 207425 115640 0,785 | 165349 71593 0,868

Tabella 5.4. Confronto tra Sottomercati Spaziali

Con il modello di regressione lineare i metodi hanno delle prestazioni previsive simili
preferendo leggermente uno dei tre modelli a seconda dell’indicatore preso come
riferimento. Nel random forest queste differenze sono piu evidenti e il modello basato
sui cluster LISA risulta sempre il preferibile. Generalmente il random forest con i
cluster LISA risulta essere il miglior modello, dove viene raggiunto un RMSE di
165349. Oltretutto il numero di predittori introdotti nei modelli con i cluster LISA
e di 4, quindi decisamente inferiore agli altri casi. Per questi motivi si decide di
impiegare i cluster LISA come sottomercati spaziali.

Modello Lineare

Applichiamo il modello di regressione lineare. Nella costruzione dei modelli le varia-
bili selezionate si basano su delle soglie del p-value pari a 0,05. Si costruisce quindi
inizialmente il modello regressivo basato sulle sole variabili interne all’immobile,
ovvero quelle che non fanno riferimento alla collocazione spaziale.

Si indicano in tabella 5.5 i risultati del modello cosi trovato con i relativi coef-
ficienti di regressione, errori standard ed estremi degli intervalli di confidenza al
95% di tipo Wald. Dalla tabella si puo vedere che numerose variabili non sono state
selezionate nel modello per insufficiente livello di significativita dei coefficienti di
regressione associati. In particolare, sono state scartate le variabili relative alla
certificazione energetica, al piano d’ingresso, alla necessaria ristrutturazione, alla
nuova costruzione e gli indicatori di presenza/assenza dell’armadio a muro, del
balcone, del parcheggio, della piscina e del ripostiglio.
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Parametro Stima  Errore Standard — IC;,s ICsup
Intercetta -80902 17586 -115378  -46427
Superficie Costruita 3851 83 3689 4013
Numero di Bagni 102406 6397 89865 114946
Numero di Stanze -17203 3852 -24754 -9652
Attico 137106 14306 109059 165152
Casa Indipendente -367574 20714 -408184  -326965
Esterno -64267 12310 -88400  -40133
Nuova Costruzione 110494 10233 90433 130555
Aria Condizionata 30692 7552 15886 45497
Ascensore 51886 9400 33458 70315
Giardino -50734 8115 -66643  -34825
Riscaldamento Autonomo | -45219 9243 -63339  -27099

Tabella 5.5. Modello di Regressione Lineare Ridotto

Analizziamo ora le variabili selezionate. Il parametro legato alla superficie co-
struita indica che a parita delle altre variabili il prezzo di un immobile aumenta di
3851 € per un aumento unitario dei metri quadri costruiti, ovvero sotto le dovute
ipotesi si ha un prezzo di 3851 €/m?. Si nota che il modello con sola intercetta e
superficie costruita mostrerebbe un prezzo di 4210 €/m?. Questo risultato & in linea
con il prezzo medio al metro quadro di marzo 2020 segnalato dalle principali analisi
di mercato. Ad esempio, un’indagine del portale immobiliare spagnolo indomio.es
ha indicato un prezzo medio di 3643 €/m? nel comune di Madrid a marzo 2020.
Al pari delle altre variabili un maggior numero di bagni comporta ad un netto
aumento del prezzo di vendita dell’immobile (102406€ in piu per ciascun bagno),
mentre un maggior numero di stanze implica un leggero abbassamento del prezzo.
Con gli stessi presupposti, per quanto riguarda la tipologia di abitazione, un attico
ha un maggior valore rispetto ad un appartamento (baseline del modello), invece
una casa indipendente fa scendere drasticamente il prezzo di vendita.

Gli attributi che aggiungono valore all’'immobile a parita delle altre variabili sono
I’aria condizionata e 1’ascensore, al contrario, la presenza dell’esterno, del giardino e
del riscaldamento autonomo ne detraggono il valore.

Si ripete ’analisi di regressione lineare aggiungendo le variabili legate alle distanze
dai luoghi d’interesse e le variabili spaziali che segnalano ’appartenenza ad un
determinato cluster LISA:
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Parametro Stima  Errore Standard — IC;,f ICsup
Intercetta 143200 18020 107907 178562

Superficie Costruita 3308 70 3170 3445
Numero di Bagni 67510 5390 56947 78080
C. Energetica Bassa -34730 8295 -50998  -18472
Piano d’Ingresso 6123 1501 3182 9065
Attico 117600 12610 92934 142362
Casa Indipendente -234000 18780 -270814 -197172
Necessaria Ristrutturazione | -39620 9070 -57405  -21844
Nuova Costruzione 102400 9522 83706 121042
Piscina 36480 8520 19778 53183
Riscaldamento Autonomo 31420 8170 15408 47441
D. Supermercato 50 13 25 75
D. Farmacia -91 28 -146 -36
D. Banca -64 12 -86 -41
D. Universita -22 4 -30 -14
D. Scuola dell’Obbligo -82 18 -116 -47
D. Scuola dell’Infanzia 160 18 124 195
D. Stazione dei Treni -14 3 -20 -8
D. Parco 228 30 169 287
D. Stadio -17 2 -21 -13
D. Discoteca -13 3 -20 -6
D. Cinema -19 4 -27 -11
D. Biblioteca 37 8 22 52
D. Attrazione Turistica -14 3 -20 -7
Cluster High-Low -167300 15030 -196756 -137814
Cluster Low-High -128100 11170 -149969 -106174
Cluster Low-Low -179700 10590 -200451 -158911

Tabella 5.6. Modello di Regressione Lineare Completo
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Dalla tabella emerge che alcune variabili interne all’abitazione, prima significative,
ora non lo sono piu e viceversa. Il numero di stanze, ’esterno, ’aria condizionata,
I’ascensore e il giardino sono tutte variabili che non sono state piu selezionate.

Al contrario, la certificazione energetica, il piano d’ingresso, gli indicatori di necessa-
ria ristrutturazione e nuova costruzione e la presenza/assenza della piscina diventano
variabili da includere nel modello. Tra le variabili gia presenti nel modello ridotto,
si segnala che i segni dei coefficienti di regressione vengono mantenuti, ad esclusione
del riscaldamento autonomo. Il valore positivo di quest’ultimo indica infatti che il
riscaldamento autonomo aggiunge valore ad un immobile. E’ interessante notare
anche come il valore del parametro relativo alla superficie costruita si sia abbassato a
3308€. Per quanto riguarda le nuove variabili, la classe energetica di livello basso e la
necessaria ristrutturazione tolgono di valore all’immobile, mentre, se ’abitazione fa
parte di una nuova costruzione o possiede al suo interno una piscina, la valutazione
dell’immobile sale.

Per quanto concerne le variabili basate sulla distanza, un valore di stima positivo
indica che all’allontanamento di un’unita di distanza (il metro) dell’abitazione da un
determinato luogo d’interesse, segue un prezzo dell'immobile maggiore che crescera
di una quantita di denaro pari al coefficiente di regressione di riferimento. Se il
valore di stima e invece negativo, il prezzo dell’immobile diminuira linearmente
all’allontanamento del luogo d’interesse.

Infine, i valori dei parametri dei cluster LISA negativi indicano che il prezzo dell’im-
mobile ¢ inferiore al prezzo di base se non si trova in una zona considerata di tipo
"High-High" (che viene presa come baseline).
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Eseguiamo delle analisi dignostiche del modello basate sull’andamento dei residui

del modello:

Residuals vs Fitted Normal Q-Q Scale-Location
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Figura 5.9. Diagnostiche del Modello
1) Residuals vs Fitted 2) Normal Q-Q Plot 3) Scale-Location 4) Cook’s Distance
5) Standardized Residuals vs Leverage 6) Cook’s Distance vs Standardized Leverage

Dal primo grafico appare che ’assunzione di linearita sia valida, infatti i residui
sono distribuiti uniformemente attorno allo 0 al variare dei valori previsti della Y.
L’assunzione di normalita non sembra invece valida. I1 Q-Q plot mostra infatti che i
quantili dei residui standardizzati non seguono una distribuzione normale standard
e che quindi sono difformi dai quantili teorici. Quest’assunzione non e tuttavia
essenziale al fine degli scopi della nostra indagine, in quanto siamo interessati mag-
giormente all’aspetto previsionale dei modelli.

Come si puo vedere dal primo e dal terzo grafico I'ipotesi di omoschedasticita ¢
evidentemente violata. All’aumentare dei valori assunti della variabile risposta, la
variabilita delle stime aumenta nettamente. Questo riflette sia nella relazione tra
i residui e i valori previsti, che nella relazione tra residui standardizzati e valori
previsti. In caso di omoschedasticita, il terzo grafico mostrerebbe infatti dei residui
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standardizzati distribuiti attorno al valore 1 al variare dei valori previsti della Y.
Un metodo per risolvere il problema della mancata omoschedasticita consiste nel
trasformare la variabile risposta attraverso una funzione logaritmica. Si decide
quindi di passare da un modello lineare ad uno log-lineare.

Abbiamo inoltre osservato che I'introduzione di alcune variabili esplicative che sono
state ricavate come trasformazioni quadratiche delle originali portano ad un modello
che descrive meglio il rapporto tra la variabile risposta e i regressori.

Infine, si verifica la presenza di multicollinearita. La verifica avviene generalmente a
livello quantitativo attraverso i fattori di inflazione della varianza (VIF) associati
ciascuno ai coefficienti di regressione. Il VIF indica quanto una determinata variabile
esplicativa sia dipendente dalle altre. Nel nostro caso, fissando una soglia limite del
VIF pari a 5 (valore solitamente consigliato), si ha che le variabili che si presentano
come trasformata quadratica sono collineari con la loro forma semplice. Questo
risultato & dovuto al metodo di costruzione stesso della forma polinomiale del modello
e non rappresenta un problema a livello inferenziale. Si segnala oltretutto che i
grafici dal 4 al 6 non indicano la presenza di outliers o punti leva.

Riportiamo nella tabella sottostante il confronto a livello previsivo tra tutti e
4 i modelli che sono stati presi in considerazione:

Capacita Previsive
Modello
RMSE MAE R?

Modello Lineare Ridotto 243064 144218 0,703
Modello Lineare Completo 207425 115640 0,785
Modello Log-Lineare Ridotto | 248837 135127 0,692

Modello Log-Lineare Completo | 189767 87296 0,814

Tabella 5.7. Confronto tra Modelli di Regressione Lineare

Il modello log-lineare completo & quello che prevede pili accuratamente i prezzi degli
immobili secondo tutti e tre gli indici di previsione. Una grande differenza ¢ stata
generalmente osservata tra i modelli di regressione ridotti e quelli completi, a favore
di questi ultimi. Simili prestazioni si hanno invece tra il modello di regressione
lineare ridotto e quello log-lineare.

Per apportare ulteriori migliorie potrebbero essere introdotti degli effetti di intera-
zione tra le variabili a discapito di una maggiore difficolta interpretativa.

Modelli Lineari Generalizzati

Considerando il prezzo di vendita dell’immobile come una variabile quantitativa
continua, i modelli lineari generalizzati che si possono utilizzare devono avere un
supporto per la variabile risposta che coincida con l'insieme dei numeri reali (o in
questo caso anche solo reali positivi). I modelli che soddisfano questo requisito si
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basano sulla distribuzione normale, esponenziale o gamma.

Altrimenti, se il prezzo di vendita viene trattato come variabile discreta, si puo
impiegare una distribuzione di Poisson.

Il modello normale viene stimato sulla variabile risposta non trasformata e la funzione
legame utilizzata ¢ logaritmica. Tra il modello esponenziale e gamma non ci sono
per costruzione stime dei coefficienti di regressione differenti. Prendendo quindi in
considerazione il piu generale modello gamma, si utilizza come risposta il logaritmo
del prezzo di vendita e la funzione legame & quella canonica (per il modello glm
gamma la funzione legame canonica ¢ I'inversa). Infine, per il modello di Poisson
non viene applicata alcuna trasformazione sulla risposta e anche in questo caso si
applica la sua funzione legame canonica (la funzione logaritmica).

Si mettono a confronto i modelli appena citati:

Capacita Previsive
Distribuzione
RMSE MAE R?

Normale 166762 90323 0,858
Gamma 188031 88223 0,814

Poisson 172424 85709 0,849

Tabella 5.8. Confronto tra GLM

Tenendo conto del solo indicatore RMSE, tutti e tre i modelli glm hanno capacita
previsive maggiori rispetto al modello regressivo lineare e log-lineare. In particolare,
il modello glm normale con funzione legame logaritmica risulta essere il miglior
modello per quanto riguarda PRMSE e 1’R%. 1l modello di Poisson & preferibile
secondo 'M AF e risulta nel complesso molto ben bilanciato per tutti gli indicatori.

Modelli con Regolarizzazione

I modelli con regolarizzazione sono stati costruiti a partire dal modello regressivo
lineare completo in modo tale da poter mettere a paragone i risultati trovati in
modo immediato e avere un’idea generale dell’impatto che avrebbero le tecniche di
regolarizzazione sulle capacita previsive di un modello.

In successione abbiamo apportato una regolarizzazione di tipo Ridge, seguita dalla
Lasso e infine dall’Elastic Net. Per selezionare un’adeguata costante di restringimento
A (Iiperparametro dei modelli) nel caso Ridge e Lasso, sono stati messi a confronti
dei valori in un range tra 0,1 e 10000 intervallati su una scala logaritmica. L’insieme
di valori da assegnare a A ¢ stato ottenuto osservando graficamente che un valore
fuori range non apporta alcun miglioramento a livello previsivo.

Per I’Elastic Net si ¢ presa in considerazione la forma semplicficata della funzione di
costo (formula 3.9) ed ¢ stata eseguita una Grid Search dell’iperparametro A nello
stesso range di valori di cui sopra, unita alla ricerca della costante regolatrice a
nell’intervallo [0, 1].
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Si visualizza graficamente il processo di selezione degli iperparametri:
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Figura 5.10. Processo di Regolarizzazione

La regressione Ridge non apporta alcun miglioramento di tipo previsionale rispetto
al modello regressivo lineare per valori di A fino a 10000. Piu in generale questo
avviene per A < 33685, mentre per valori maggiori di questa soglia 'RMSFE di
cross-validation aumenta in maniera costante. La regressione Lasso porta invece
ad un miglioramento previsivo rispetto al modello regressivo lineare (e quindi alla
regressione Ridge) abbassando ’RM SE da 207425 a 206193 con A = 1031.

Infine, risultati migliori si hanno applicando una regolarizzazione di tipo Elastic Net
con A=7071 e a=0,1dove 'RMSEFE ¢ pari a 206111.

BRI B T

1000(

0.0
0.1
02
0.3
0.4
05
0.6
07
08
0.9
1.0



5.4 Analisi di Regressione 91

K-Nearest Neighbours

I1 KNN e il primo modello non-parametrico che si va ad applicare. Poiché le varia-
bili presenti nel dataset sono di diversa natura, € necessario riuscire a trovare una
codifica comune. A tal fine, si suppone che le variabili nel dataset siano di natura
quantitativa e le si standardizzano centrando i valori attorno allo 0 e apportando
opportuni cambiamenti di scala.

Per misurare la dissimilarita tra le osservazioni si va ad utilizzare la distanza euclidea
sui dati standardizzati. Dopo 'applicazione del modello i risultati previsivi saranno
riportati sulla scala originale.

Il numero ideale di vicini k € ricercato all’interno del range di valori compresi tra
1 e 50. Si e visto che per k = 6 viene ottenuto ’errore previsivo minimo. Infatti,
come visualizzabile dalla figura 5.11 'RM SE di cross-validation diminuisce fino in
corrispondenza di k = 6 per poi aumentare costantemente per scelte di valori di k
piu elevati. ’RMSE del modello finale e pari a 200389.
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Figura 5.11. Tuning del Modello KNN
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5. Applicazione
MARS

Il modello MARS si puo presentare sotto diverse formulazioni. Nelle varie versioni di

questo modello possono essere presenti numerosi termini che regolano sia il Forward
Step che il Backward Step.

In questa sede si prende in considerazione la versione pitt semplice del MARS, ovvero

quella esposta nella sezione 3.3.2. Sono presenti due iperparametri: il grado del
modello e il livello di pruning, ovvero il numero massimo di termini conservati dopo

il processo di Backward Step. Si deve quindi eseguire una Grid Search misurando
I’errore di previsione risultante dalla combinazione di questi due parametri.

Il grado del modello viene fatto variare tra 1 e 3, mentre il livello di pruning tra 2 e

50. Si ¢ infatti osservato che i valori dei parametri esterni a questi intervalli non
portano a risultati predittivi migliori.

Il processo di tuning € rappresentato dal grafico 5.12. Il modello selezionato si trova

in corrispondenza di un grado pari a 2 e di un livello di pruning di 30. L’RMSE di
cross-validation e pari a 194751.
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Figura 5.12. Tuning del Modello MARS
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Albero Decisionale

Si vuole ora applicare una forma semplice di albero decisionale. Alla versione greedy
dell’albero si svolge cosi il tuning del modello sull’iperparametro di pruning. Questo
esprime la profondita massima dell’albero. Il valore dell’iperparametro che restituisce
I’RM SE minimo nell'intervallo discreto [1,20] ¢ pari a 10. Una profondita massima
superiore a 10 non induce a capacita predittive migliori.

L’RMSFE assume il valore 243439.
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Figura 5.13. Tuning dell’Albero Decisionale

Random Forest

Il modello Random Forest puo essere formulato in una moltitudine di modalita.
Per semplicita abbiamo utilizzato una versione del modello standard. Si decide di
non regolare la profondita massima dell’albero in quanto il Random Forest & poco
influenzato dall’overfitting dovuto alla mancanza di tuning di questo iperparametro
quando il numero di alberi ¢ sufficientemente elevato.

Il tuning degli iperparametri & stato svolto sequenzialmente.

In primo luogo, fissando gli altri parametri, si stabilisce la regola di split scegliendo
tra quella basata sulla minimizzazione della varianza e I’Extra Tree:
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Figura 5.14. Selezione della Regola di Split

Appare evidente che la regola di split basata sulla varianza risulta piu efficace.
Successivamente, il numero di alberi € stato fissato a 150. Questo valore ¢ la soglia
dopo la quale non si ottengono risultati previsivi consistentemente migliori e, oltre-
tutto, € coerente con la numerosita campionaria del dataset.

Per ultimo, si svolge il tuning congiunto degli iperparametri relativi al numero di
variabili di split per ciascun nodo e alla dimensione minima di ciascun nodo.
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Figura 5.15. Tuning del Modello Random Forest

I1 modello finale selezionato ha un numero fissato di variabili di split di 35 e una
dimensione minima del nodo di 5. L’RMSFE corrispondente ¢ pari a 158453.
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XG-Boost

L’XG-Boost ¢ un modello che puo presentare numerosi iperparametri. Utilizzare
un’attenta procedura di selezione diviene quindi particolarmente importante.

A tal fine si articola il processo di selezione in 5 fasi successive:

1. Profondita Massima: numero massimo di cammini che vanno dal nodo radi-
ce alle foglie di ciascun albero. Corrsiponde all’iperparametro di pruning dell’albero
decisionale. Rispetto al Random Forest, nel’XG-Boost questo parametro e di mag-
gior rilevanza e controlla 'overfitting del modello.

Poiché la profondita massima € strettamente legata al numero di iterazioni di boo-
sting e al learning rate, si mostrano i risultati facendo variare questi altri due
iperparametri. Visualizziamo i risultati graficamente:
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Figura 5.16. Tuning del Modello Random Forest
Ciascun sottografico & associato ad un determinato learning rate. Di tale parametro

sono stati presi 4 valori tipicamente utilizzati. Il numero di iterazioni massimo ¢
1000. Ogni curva di ciascun sottografico ¢ associata ad una profondita massima. Si
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puo notare che in generale ' RM SE decresce all’aumentare del numero di iterazioni.
Prendendo il range di valori discreti [2, 6] si nota che la profondita massima ideale &
pari a 4 per ogni valore di learning rate fissato.

2. Peso Minimo del Nodo Figlio: nella regressione si riferisce al numero mini-
mo di istanze (ovvero di osservazioni) richieste per formare un nodo figlio. Si prende
in considerazione il range di valori discreti [2, 6]:
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Figura 5.17. Tuning del Modello Random Forest

Si seleziona un peso minimo del nodo figlio pari 2, in quanto ’RM SFE associato &
consistentemente inferiore agli altri valori dell’iperparametro al variare del numero
di iterazioni.
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3. Percentuale di Variabili e di Osservazioni di Split: rapporto tra il numero di
variabili (o osservazioni) utilizzabili per ciasun split dell’albero e il corrispondente
totale. Si prendono in esame tre diversi valori della percentuale di osservazioni

di split (50%, 75%, 100%) e si mostrano le curve associate a varie percentuali di
variabili di split tra il 40% e il 100%:
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Figura 5.18. Tuning del Modello Random Forest

Non si segnalano miglioramenti diminuendo le due percentuali di split. Per questo
motivo si prosegue I'analisi con il modello corrente.

4. Moltiplicatore Lagrangiano: detto anche semplicemente v, &€ un parametro
di pseudo-regolarizzazione. In contrasto con la profondita massima e il peso minimo
del nodo foglia che regolarizzano il modello all’interno dell’albero, v regolarizza il
modello tra gli alberi. In generale, penalizza i coefficienti elevati che non migliorano
le performance previsive. Per il dataset in esame, introdurre il Moltiplicatore La-
grangiano non induce a risultati predittivi migliori.

5. Learning Rate: indicato con 7, rappresenta la velocita con cui il modello "impara"
dai dati. Come esposto nella formula (3.19) ¢ l'iperparametro tipico dei modelli
basati sull’algoritmo della discesa del gradiente. Nonostante 1 sia stato precedente-
mente fissato al passo 1, la modifica degli altri iperparametri potrebbe implicare una
necessaria ricalibrazione del learning rate. Si svolge quindi il tuning di n facendolo

variare tra 0,01 e 0,1. In questo passo finale si fa variare il numero di iterazioni fino
ad un massimo di 10000.
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Figura 5.19. Tuning del Modello Random Forest

Il modello finale & quello trovato con 4400 iterazioni boostrap e un learning rate di
0,075. L’RM SFE al termine del processo di selezione € pari a 142482.

5.4.2 Analisi Spaziale

A partire dalla matrice dei pesi spaziali ricavata durante la fase di analisi esplorativa,
si procede applicando i passaggi descritti a livello teorico nella sezione 4.6.2.

La presenza di autocorrelazione spaziale nei dati ¢ gia stata verificata nel’ESDA.
Si prende allora come punto di inizializzaze il modello regressivo lineare ridotto i cui
valori dei coefficienti di regressione sono nella tabella 5.5. Viene quindi mantenuto
il processo di selezione delle variabili. Sui residui di tale modello viene misurato
I'indice di Moran. Il valore dell’indice osservato ¢ di 0,422 e il p-value ¢ estremamente
significativo. Rispetto al modello con sola intercetta, il quale mostrava un indice
pari a 0,561, 'autocorrelazione spaziale non descritta dal modello € pit leggera, ma
comunque fortemente presente.

Conseguentemente, si svolgono i Test dei Moltiplicatori di Lagrange per verificare
la presenza di lag spaziale e di errore spaziale. In entrambi i casi le statistiche test
indicano la presenza del rispettivo effetto spaziale. Risultati analoghi si osservano
con le controparti robuste degli stessi test. Poiché la statistica test assume un valore
maggiore (e quindi piu significativo) in corrispondenza dell’errore spaziale rispetto
al lag spaziale (1021 contro 263), si opta per l'utilizzo del modello SEM.
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Andando ad applicare nuovamente un test di Moran sui residui del modello corrente
(in questo caso il modello di errore spaziale), questo presenta un valore del p-value
pari a 0,337. Il test non risulta quindi significativo ad un livello soglia del 5% e si
decide di non proseguire oltre con la ricerca di modelli pitt complessi.

L’analisi diagnostica standard del modello ¢ riportata in appendice. I risultati sono
molto simili a quanto gia analizzato per il modello regressivo lineare. Le diagnostiche
spaziali coincidono invece con il processo di selezione del modello che & stato applicato.

I valori dei coefficienti del modello sono riportati nella tabella seguente:

Parametro Stima  Errore Standard

Intercetta -137001 17468
Superficie Costruita 3083 68

Numero di Bagni 70111 5196
Numero di Stanze 13076 3097
Attico 120567 10528
Casa Indipendente -143711 19390
Esterno 13595 9952
Nuova Costruzione 137328 13253
Aria Condizionata 22935 6119
Ascensore 22681 8254
Giardino 4414 7676
Riscaldamento Autonomo | 16279 7521

Tabella 5.9. Modello di Errore Spaziale SEM

Il parametro di errore spaziale associato al modello ¢ pari a A = 0, 74.

I valori dei coefficienti di regressione sono distinti da quelli prodotti dal modello
regressivo lineare. Molti di essi cambiano infatti di segno con l'introduzione del
parametro di errore spaziale. In questo modello, il parametro A ¢ una variabile
impiegata come esplicativa aggiunta al modello, in modo da poter tenere conto in
modo appropriato del clustering spaziale rilevato dal test I di Moran. Il coefficiente
stimato per questo termine € positivo e statisticamente significativo secondo il Test
del Rapporto di Verosimiglianza. In altre parole, fissando le altre variabili, in media
il prezzo degli immobili varia in modo direttamente proporzionale in aree circoscritte.
L’errore previsivo espresso in termini di RM SFE di cross-validation e pari a 242303. Le
trasformazioni della risposta, I'introduzione di ulteriori esplicative e il cambiamento
della struttura del modello non portano a risultati predittivi preferibili.
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5.5 Confronto tra Modelli

Avendo utilizzato la stessa metrica di costruzione, si possono mettere a confronto
tutti i modelli applicati. I risultati sono riportati nella tabella sottostante:

Train Set Cross-Validation Test Set
Modello
RMSE MAE | RMSE MAE | RMSE MAE
Modello Lineare 202158 109172 | 208429 115426 | 181631 104805

Modello Log-Lineare 178699 85775 | 189767 87296 | 166736 85520
GLM (Gaussiano) 154540 86978 | 165623 90193 | 155223 84706
KNN 165629 74384 | 200389 90493 | 177983 90260

MARS 151783 86082 | 194751 98120 | 156170 88701
Albero Decisionale 218283 124475 | 243439 129806 | 220336 127196
Random Forest 66186 27364 | 160546 70152 | 136943 64999
XG-Boost 7368 4730 | 142482 63478 | 121206 58188

Modello Spaziale (SEM) | 182558 90826 | 242303 143714 | 232234 147465

Tabella 5.10. Confronto tra Modelli Previsivi

Questa tabella compara i valori dell RM SFE e del’ M AE dei vari modelli per le tre
tipologie di set di dati (training set, cross-validation, test set).

Si puo da subito notare che, ad esclusione del modello spaziale, si ottengono risultati
migliori col test set rispetto alla cross-validation e, talvolta, anche rispetto al training
set. Si possono avere fondamentalmente due spiegazioni. La prima possibilita e che
il test set sia particolarmente favorevole e in linea con i modelli applicati. Alterna-
tivamente, al test set non e stato assegnato un numero sufficiente di osservazioni
per avere delle stime degli errori di previsione accurate. Poiché I'obiettivo principale
non € quello di generalizzare ’entita dell’errore di previsione, non si procede con
I’applicazione di un diverso dataset splitting.

I modelli che offrono le migliori prestazioni sono, in ordine, I’XG-Boost, il Random
Forest e il GLM gaussiano con funzione legame logaritmica. I primi due modelli
sembrano andare in overfitting. Apportando delle dovute regolarizzazioni ¢ possibile
diminuire I'eccessivo adattamento al modello a discapito di un leggero peggioramento
in termini di errore previsivo di cross-validation.

Si nota che il modello spaziale selezionato mostra degli scarsi risultati previsivi.
Discreto ¢ invece il suo adattamento ai dati osservati. A paritd di costruzione
(trasformazioni e numero di variabili) il modello SEM si adatta maggiormente ai dati
rispetto al corrispettivo modello regressivo. E’ possibile migliorare notevolmente
I’adattamento del modello spaziale, ma le previsioni non risultano piu promettenti.
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Capitolo 6

Conclusione

In questa tesi si sono utilizzate diverse tecniche di imputazione dei dati mancanti e
si & messo a confronto un approccio non spaziale con uno spaziale.

I nostri risultati hanno dimostrato che il metodo di imputazione basato sul Random
Forest ¢ il preferibile sul dataset di Madrid secondo gli I-Scores. Per quanto riguarda
la regressione, sebbene tutti i modelli fossero in grado di svolgere le previsioni con
una certa accuratezza, il modello XG-Boost ha mostrato la migliore performance tra
tutti i modelli esaminati.

In particolare, ’XG-Boost e stato in grado di prevedere i prezzi immobiliari sbagliando
in media di 63.478 €, corrispondente ad un RMSFE di 142482, ovvero la metrica
con la quale sono stati sviluppati i modelli. L’errore previsivo deve essere messo
in relazione con il prezzo medio degli immobili pari a 460.105 €. In termini di
accuratezza percentuale (R?), il modello spiega 1'89,9% della variazione nella variabile
dipendente. Questo dimostra la sua capacita di apprendere a fondo le informazioni
contenute nei dati e di effettuare previsioni precise.

Tuttavia, va notato che ogni modello ha i suoi vantaggi e limitazioni, e che la scelta
del modello migliore dipende dal dataset, dall’obiettivo dell’analisi e, nel caso delle
previsioni, dall’indicatore di errore di riferimento.

L’approccio spaziale non ha restituito dei buoni risultati e si ¢ dimostrato affidabile
soltanto nel caso in cui si voglia ottenere un modello descrittivo piuttosto che uno
previsivo. In questa casistica, infatti, il modello di errore spaziale SEM si ¢ adattato
maggiormente ai dati osservati rispetto ai metodi basati sulla regressione lineare.
In definitiva, & quindi in genere preferibile optare per un modello tradizionale basato
sugli alberi, o, altrimenti, su un modello GLM per bilanciare interpretabilita a
capacita previsive.

6.1 Critiche e Suggerimenti

Questa analisi presenta alcuni aspetti critici che potrebbero essere rifiniti con ulteriori
ricerche e approfondimenti. In primo luogo, nella parte applicativa si potrebbero
impiegare tutti i metodi di imputazione presentati nella parte teorica e confrontarli
con i dovuti criteri. Inoltre, si potrebbe approfondire 1'utilizzo dell’imputazione
multipla nei modelli di regressione parametrica.

In secondo luogo, & possibile migliorare i risultati previsivi dei modelli utilizzando dei
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metodi di selezione basati sulla k-fold cross-validation ripetuta o stratificata al fine di
ridurre la varianza delle stime. In aggiunta, si puo decidere di cambiare lo stimatore
per misurare ’errore di previsione sostituendo ’RM SE con altri indicatori.

Un altro aspetto che puo essere trattato in maniera differente ¢ la componente
spaziale. Nei modelli tradizionali sono introducibili numerose altre variabili di
distanza oltre a quelle indicate ed & per di piu possibile trasformarle in dummy in
modo tale che possano essere piu facilmente interpretabili e gestibili. D’altra parte,
i modelli spaziali utilizzabili sono molteplici e in questa sede € stata esposta soltanto
una delle tante categorie possibili.

In conclusione, si auspica che questa ricerca possa essere una risorsa utile e di
riferimento per tutti coloro che vogliano cimentarsi nel campo delle previsioni
immobiliari in futuro.

6.2 Appendice

Riportiamo in appendice il codice sorgente scritto nel linguaggio R.

Abbiamo diviso 'analisi in 5 diverse fasi:

Pre-Processing (parte prima): gestione delle variabili e geocodifica degli indirizzi
Pre-Processing (parte seconda): gestione delle variabili di distanza
Pre-Processing (parte terza): gestione dei dati mancanti

Analisi Esplorativa

Regressione

GUk L=
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Pre-Processing 1

# Caricamento delle Librerie

library(readr)
library(stringr)
library(Hmisc)
library(tidygeocoder)
library(writexl)

data=read_csv('houses_Madrid.csv')
data=as.data.frame(data)
data=subset(data,!is.na(data$street_number))
#View(data)

data=subset (data, c(buy_price,buy_price_by_area,rent_price,parking_price,sq_mt_built,
sq_mt_useful,sq_mt_allotment,built_year,n_bathrooms,n_floors,n_rooms,
energy_certificate,floor,house_type_id,title,subtitle,raw_address,
street_name,street_number,neighborhood_id,is_accessible,is_exterior,
is_exact_address_hidden,is_renewal_needed,is_new_development,
is_parking_included_in_price,is_floor_under,is_orientation_north,
is_orientation_south,is_orientation_east,is_orientation_west,
has_ac,has_fitted_wardrobes,has_lift,has_balcony,has_garden,
has_parking,has_pool,has_storage_room,has_individual_heating,
has_central_heating,has_terrace,has_green_zones))

data=unique(data) # eliminazione dei duplicati
data=data[-c(5511,5989,6180),] # eliminazione delle osservazioni esterme all'area di Madrid

rownames (data)=1:nrow(data)

dim(data)

## [1] 6287 43

summary(data) # statistiche descrittive dit sintesi delle variabili

#Hit buy_price buy_price_by_area rent_price parking_price

## Min. ;42000 Min. : 688 Min. :-17691896  Min. : 0

## 1st Qu.: 200000 1st Qu.: 2550 1st Qu.: 868 1st Qu.: 0

## Median : 320000 Median : 3600 Median : 1182 Median : 0

## Mean : 457566 Mean : 3881 Mean : -6016 Mean : 2477

## 3rd Qu.: 560000 3rd Qu.: 4785 3rd Qu.: 1664 3rd Qu.: 0

## Max. : 7525000 Max. 118462 Max. : 2517 Max. : 380000

#it NA's 13897

##t sq_mt_built sq_mt_useful sq_mt_allotment built_year n_bathrooms

## Min. : 20.0 Min. : 1.00 Min. : 1.0 Min. : 1850 Min. : 1.0



#it
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#Hit
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#it
##
#it
##
#i#t
##
#i#
#i#
#Hi#t
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#it
##
#i#t
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1st Qu.: 69.0
Median : 93.0
Mean :114.6
3rd Qu.:132.0
Max. :920.0
NA's :9
n_floors
Min. :1.000
1st Qu.:2.000
Median :3.000
Mean :3.095
3rd Qu.:4.000
Max. :5.000
NA's 16025
house_type_id
Length:6287
Class :character
Mode :character

street_name
Length:6287
Class :character
Mode :character

is_exterior
Mode :logical
FALSE:577
TRUE :5210
NA's :500

is_parking_included_in_price is_floor_under
Mode :logical

Mode :logical
FALSE:208
TRUE :2182
NA's :3897

1st Qu.: 59.00 1st Qu.: 97.5 1st Qu.:1960 1st Qu.: 1
Median : 78.00 Median :250.0 Median :1975 Median : 2
Mean : 91.91 Mean :277.2 Mean 11976 Mean 1
3rd Qu.:106.00 3rd Qu.:360.0 3rd Qu.:2003 3rd Qu.: 2
Max. :750.00 Max. :994.0 Max. 12022 Max. 111
NA's 13658 NA's 16115 NA's 14356 NA's :5
n_rooms energy_certificate floor
Min : 0.000 Length:6287 Length:6287
1st Qu.: 2.000 Class :character Class :character
Median : 3.000 Mode :character Mode :character
Mean 2.657
3rd Qu.: 3.000
Max. :24.000
title subtitle raw_address
Length:6287 Length:6287 Length:6287
Class :character Class :character Class :character
Mode :character Mode :character Mode :character

street_number
Length:6287
Class :character
Mode :character

neighborhood_id
Length:6287

Class :character
Mode :character

is_accessible
Mode:logical
TRUE:1186
NA's:5101

O O 0w O O

is_exact_address_hidden is_renewal_needed is_new_development

Mode :logical
FALSE:6287

FALSE:5175 FALSE:2283
TRUE :838 TRUE :758
NA's :274 NA's :3246

Mode :logical
FALSE:5458
TRUE :829

Mode :logical
FALSE:4999
TRUE :1142
NA's :146

is_orientation_north
Mode :logical

is_orientation_south is_orientation_east is_orientation_west has_ac

Mode :logical
FALSE:1572
TRUE :1469
NA's :3246

Mode :logical
FALSE:1810
TRUE :1231
NA's :3246

Mode :logical
FALSE:2028
TRUE :1013
NA's :3246

Mode:logical
TRUE:3033
NA's:3254
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## has_fitted_wardrobes has_lift has_balcony has_garden
## Mode:logical Mode :logical Mode:logical Mode:logical
## TRUE:3810 FALSE:1311 TRUE: 1000 TRUE:215
## NA's:2477 TRUE :4640 NA's:5287 NA's:6072
## NA's :336

#it

#i#t

#it

## has_parking has_pool has_storage_room has_individual_heating
## Mode :logical Mode:logical Mode:logical Mode :logical
## FALSE:3897 TRUE: 1877 TRUE:2431 FALSE:857

## TRUE :2390 NA's:4410 NA's:3856 TRUE :2381

#it NA's :3049

#i#

#it

##

## has_central_heating has_terrace has_green_zones

## Mode :logical Mode:logical Mode:logical

## FALSE:2381 TRUE:2905 TRUE: 1692

## TRUE :857 NA's:3382 NA's:4595

## NA's :3049

##

#it

##

# Gestione delle Variabilt

# 1) gestione delle wvariabili di prezzo

# 2) trasformazione delle variabili categoriali
# 3) gestione delle variabili di posizione

# 4) eliminazione delle wvartabili superflue

## 1

for(i in 1:nrow(data)){ # aggiunta del prezzo del parcheggio a quello di vendita
if (!is.na(data$is_parking_included_in_price[i])&data$is_parking_included_in_price[i]==FALSE){
data$buy_pricel[il=data$buy_price[i]+data$parking price[i]
}
}

## 2
### Certificazione Energetica
energy_certificate_factor=factor(data$energy_certificate)

energy_certificate_factor=relevel(energy_certificate_factor, "en tramite")
summary (energy_certificate_factor)

## en tramite A B C D
## 2266 347 224 177 268
## E F G inmueble exento no indicado

## 640 134 161 56 2014
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boxplot(data$buy_price~energy_certificate_factor, 'Boxplot',
'Energy Certificate', 'Buy Price')
Boxplot
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en tramite B C D E F G no indicado

Energy Certificate

summary (Im(data$buy_price~energy_certificate_factor)) # non significativitd delle dummy

##

## Call:

## Im(formula = data$buy_price ~ energy_certificate_factor)

#i#

## Residuals:

#i# Min 1Q Median 3Q Max

## -552447 -245328 -125228 104772 6892553

##

## Coefficients:

#i Estimate Std. Error t value Pr(>|t])
## (Intercept) 445228 9064 49.119 < 2e-16
## energy_certificate_factorA 187219 24874  7.527 5.93e-14
## energy_certificate_factorB 157938 30221  5.226 1.79e-07
## energy_certificate_factorC 81642 33675 2.424 0.0154
## energy_certificate_factorD 8585 27872 0.308 0.7581
## energy_certificate_factorE -44653 19316 -2.312  0.0208
## energy_certificate_factorF -35968 38361 -0.938 0.3485
## energy_certificate_factorG -171207 35193 -4.865 1.17e-06
## energy_certificate_factorinmueble exento -107133 58368 -1.835 0.0665

## energy_certificate_factorno indicado 16563 13214 1.253 0.2101



#it
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##

(Intercept)

energy_certificate_factorA
energy_certificate_factorB
energy_certificate_factorC
energy_certificate_factorD
energy_certificate_factorE
energy_certificate_factorF
energy_certificate_factorG

*okk
* Kk
*okk

k% k

energy_certificate_factorinmueble exento .
energy_certificate_factorno indicado

Signif. codes: O 'x*xx' 0.001

"*x' 0.01 'x' 0.05 '.

'0.1"

Residual standard error: 431500 on 6277 degrees of freedom

Multiple R-squared: 0.02111,
F-statistic: 15.04 on 9 and 6277 DF,

Adjusted R-squared:
p-value: < 2.2e-16

"1

0.01971

summary (1lm(data$buy_price~energy_certificate_factor+data$sq_mt_built))

#i#
##
#i#
##
#i#
##
#i#
##
#it
##
#i#t
##
#i#t
##
#i#t
#i#
#Hi#t
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t
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Estimate Std. Error t value Pr(>|tl)

.06

06
21
01
33
15
65
42

.61

11
94

7080.
14870.
18032.
20087.
16625.
11632.
22962.
21107.
34820.

7885.

40.

556 -3.
8 T.
07 6
4 2
05 0.
07 -1
65 -1.
03 -1
52 -0
92 O
07 101

133
335

.227
.704

104

.710

101

.332
.682
.986
.561

0.

00174

2.50e-13
5.07e-10

AN O OO OO OO

.00687
.91740
.08737
.27083
.18279
.49519
.32420

2e-16

Call:
Im(formula = data$buy_price ~ energy_certificate_factor + data$sq_mt_built)
Residuals:

Min 1Q Median 3Q Max
-1848864 -119024  -24185 86108 4922877
Coefficients:

(Intercept) -22181
energy_certificate_factorA 109079.
energy_certificate_factorB 112280.
energy_certificate_factorC 54312.
energy_certificate_factorD 1724.
energy_certificate_factorE -19716.
energy_certificate_factorF -25287.
energy_certificate_factorG -28122.
energy_certificate_factorinmueble exento -23751
energy_certificate_factorno indicado T775.
data$sq_mt_built 4069.
(Intercept) *%k
energy_certificate_factorA *okok
energy_certificate_factorB *okok
energy_certificate_factorC *%
energy_certificate_factorD
energy_certificate_factorE
energy_certificate_factorF
energy_certificate_factorG
energy_certificate_factorinmueble exento
energy_certificate_factorno indicado
data$sq_mt_built *kk
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## Signif. codes: O '*x*x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 257300 on 6267 degrees of freedom

## (9 osservazioni eliminate a causa di valori mancanti)

## Multiple R-squared: 0.6307, Adjusted R-squared: 0.6301

## F-statistic: 1070 on 10 and 6267 DF, p-value: < 2.2e-16

# —-> trasformazione della wvariabile

data$energy_certificate[data$energy_certificate=='A'|data$energy_certificate=='B"]|
data$energy_certificate=='C']='High'

data$energy_certificate[data$energy_certificate=='D'|data$energy_certificate=='E'|
data$energy_certificate=='F'|data$energy_certificate=='G"|
data$energy_certificate=='inmueble exento'|
data$energy_certificate=='en tramite']='Low'

data$energy_certificate[data$energy_certificate=='no indicado']=NA

summary (as.factor(data$energy_certificate))

## High Low NA's
## 748 3525 2014

boxplot(data$buy_price~as.factor(data$energy_certificate),

'"Energy Certificate', 'Buy Price', c('#F8766D', '#00BFC4'))
O
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summary (lm(buy_price~as.factor(energy_certificate)+sq_mt_built, data)) # wariabile significativa

#i#

## Call:

## Im(formula = buy_price ~ as.factor(energy_certificate) + sq_mt_built,
#it data = data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1838381 -114862 -19448 85041 4933302

#it

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 74467 .94 11089.17 6.715 2.12e-11 *x*x
## as.factor(energy_certificate)Low -103070.93 10295.93 -10.011 < 2e-16 **x*
## sq_mt_built 4073.19 47.17 86.348 < 2e-16 *xx
##t ——-—

## Signif. codes: O '*x*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#it

## Residual standard error: 254800 on 4262 degrees of freedom
#it (2022 osservazioni eliminate a causa di valori mancanti)
## Multiple R-squared: 0.6447, Adjusted R-squared: 0.6445
## F-statistic: 3867 on 2 and 4262 DF, p-value: < 2.2e-16

### Piano

summary (as.factor(data$floor))

#it 1 2 3
#it 1282 1017 914
#it 4 5 6
#it 699 405 269
#i 7 8 9
#it 171 106 50
#i# Bajo Entreplanta exterior Entreplanta interior
#it 693 86 13
## Semi-sbétano exterior Semi-sétano interior Sétano
#it 19 17 2
## Sétano exterior Sétano interior NA's
#it 2 6 536

data$floor[data$floor=="Entreplanta'|data$floor=="'Entreplanta exterior'|
data$floor=='Entrep1anta interior']='0.5"

data$floor[data$floor=="'Bajo']='0"

data$floor[data$floor=='Semi-sétano' |data$floor=="'Semi-sétano exterior'
data$floor=='Semi-sétano interior']='-0.5"'

data$floor[data$floor=="'Sé6tano' |data$floor=='S6tano exterior'|
data$floor=='Soétano interior']='-1"

data$floor=as.numeric(data$floor)

summary (data$floor)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#it -1.00 1.00 2.00 2.61 4.00 9.00 536
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### Tipo di Casa

data_house_type=str_split_fixed(data$title,' ',2)[,1]
summary (as.factor(data_house_type))

##  Atico Casa Chalet Duplex Estudio Piso
#i# 391 114 191 235 166 5190

for(i in 1:nrow(data)){
if (is.na(data$house_type_id[i])){
data$house_type_id[i]=data_house_typel[il
}
}

house_type_factor=factor(data$house_type_id)
house_type_factor=relevel (house_type_factor, 'HouseType 1: Pisos')
summary (house_type_factor)

#i# HouseType 1: Pisos Estudio

## 5190 166

## HouseType 2: Casa o chalet HouseType 4: Diplex

## 305 235

#i#t HouseType 5: Aticos

#i# 391

boxplot(data$buy_price~house_type_factor, 'House Type', 'Buy Price',

c('#F8766D"', '#A3A500', '#00BF7D', '#00BOF6', '#E76BF3'))
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HouseType 1: Pisos HouseType 2: Casa o chalet HouseType 5: Aticos

House Type

summary (1lm(data$buy_price~house_type_factor)) # dummy significative

##

## Call:

## lm(formula = data$buy_price ~ house_type_factor)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1049505 -224818 -105818 115182 6829860

##

## Coefficients:

## Estimate Std. Error t value
## (Intercept) 404818 55567 72.851
## house_type_factorEstudio -189765 31564 -6.012
## house_type_factorHouseType 2: Casa o chalet 727686 23586 30.852
## house_type_factorHouseType 4: Duplex 142927 26699 5.353
## house_type_factorHouseType 5: Aticos 290321 20994 13.829
## Pr(>tl)

## (Intercept) < 2e-16 *xx*

## house_type_factorEstudio 1.93e-09 *xx*

## house_type_factorHouseType 2: Casa o chalet < 2e-16 *xx

## house_type_factorHouseType 4: Duplex 8.94e-08 *x*x*

## house_type_factorHouseType 5: Aticos < 2e-16 *¥x

## -
## Signif. codes: 0 'skx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 400300 on 6282 degrees of freedom
## Multiple R-squared: 0.1567, Adjusted R-squared: 0.1562
## F-statistic: 291.9 on 4 and 6282 DF, p-value: < 2.2e-16

summary (1lm(data$buy_price~house_type_factor+data$sq _mt_built)) # dummy non piu significative

##

## Call:

## Im(formula = data$buy_price ~ house_type_factor + data$sq _mt_built)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1921939 -116494  -27158 84891 4545762

##

## Coefficients:

## Estimate Std. Error t value
## (Intercept) -74467 .38 5971.51 -12.470
## house_type_factorEstudio 21458.70 19551.14  1.098
## house_type_factorHouseType 2: Casa o chalet -409824.00 18389.18 -22.286
## house_type_factorHouseType 4: Duplex -20294.27  16520.92 -1.228
## house_type_factorHouseType 5: Aticos 141187.85 13013.93 10.849
## data$sq_mt_built 4712.81 48.13 97.924
## Pr(>ltl)

## (Intercept) <2e-16 ***

## house_type_factorEstudio 0.272

## house_type_factorHouseType 2: Casa o chalet <2e-16 **x

## house_type_factorHouseType 4: Diplex 0.219

## house_type_factorHouseType 5: Aticos <2e-16 **x*

## data$sq_mt_built <2e-16 **x*

## -—-

## Signif. codes: O 's*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 246500 on 6272 degrees of freedom
## (9 osservazioni eliminate a causa di valori mancanti)

## Multiple R-squared: 0.661, Adjusted R-squared: 0.6607
## F-statistic: 2446 on 5 and 6272 DF, p-value: < 2.2e-16

# —-> trasformazione della wvariabile

data$house_type_id[data$house_type_id=='HouseType 1: Pisos'|data$house_type_id=='Estudio'|
data$house_type_id=='HouseType 4: Diuplex']='Apartment'

data$house_type_id[data$house_type_id=='HouseType 2: Casa o chalet'|data$house_type_id=='Casa']
data$house_type_id=='Finca']='Independent’

data$house_type_id[data$house_type_id=='HouseType 5: Aticos']='Attic'

summary (as.factor (data$house_type_id))

##  Apartment Attic Independent
#i# 5591 391 305
boxplot(data$buy_price~as.factor(data$house_type_id), 'House Type', 'Buy Price',

c('#F8766D', '#00BA38"', '#619CFF'))
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Apartment Attic Independent
House Type
summary (1lm(buy_price~as.factor(house_type_id)+sq_mt_built, data))
#it
## Call:
## lm(formula = buy_price ~ as.factor(house_type_id) + sq_mt_built,
#i data = data)
#i#
## Residuals:
## Min 1Q Median 3Q Max
## -1916906 -116588 -27306 85493 4551625
#i#
## Coefficients:
## Estimate Std. Error t value Pr(>|tl)
## (Intercept) -73451.44 5859.37 -12.54 <2e-16 *x*x
## as.factor(house_type_id)Attic 141785.04  12979.72  10.92 <2e-16 ***
## as.factor(house_type_id)Independent -406841.59  18288.11 -22.25 <2e-16 **x*
## sq_mt_built 4700.71 47.58 98.81 <2e-16 **x
## ——-
## Signif. codes: O 'xkx' 0.001 '*x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 246500 on 6274 degrees of freedom
## (9 osservazioni eliminate a causa di valori mancanti)
## Multiple R-squared: 0.6608, Adjusted R-squared: 0.6607

## F-statistic: 4075 on 3 and 6274 DF, p-value: < 2.2e-16
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### Balcone

summary (as.factor (data$has_balcony))

## TRUE NA's
## 1000 5287

summary (as.factor(data$has_terrace))

## TRUE NA's
## 2905 3382

data$has_balcony[data$has_balcony==TRUE|data$has_terrace==TRUE]='TRUE'
summary (as.factor(data$has_balcony))

## TRUE NA's
## 3425 2862

### Giardino

summary (as.factor (data$has_garden))

## TRUE NA's
## 215 6072

summary (as.factor(data$has_green_zones))

## TRUE NA's
## 1692 4595

data$has_garden[data$has_garden==TRUE|data$has_green_zones==TRUE]='TRUE'
summary (as.factor (data$has_garden))

## TRUE NA's
## 1907 4380

### Riscaldamento

summary (as.factor (data$has_central_heating))

## FALSE TRUE NA's
## 2381 857 3049

summary (as.factor (data$has_individual_heating))

## FALSE TRUE NA's
## 857 2381 3049



## 3

data_ng=as.data.frame(str_split_fixed(data$neighborhood_id, ':
data_neighborhood=str_split_fixed(data_ng[,1],"'
data_district=str_split_fixed(data_ng[,2], 'District ',2)[,2]

summary (as.factor (data_neighborhood))

## 30 126 62 129 35
#i#t 138 133 122 118 114
## 19 115 73 89 111
#i#t 104 100 100 99 98
## 17 23 37 18 75
#i#t 82 79 79 7 76
## 69 87 4 112 2
#i# 67 67 66 65 65
#i# 114 3 33 13 32
#Hit 61 61 60 59 58
#i# 61 16 133 86 118
#Hit 54 52 51 51 49
#i# 45 99 128 29 27
## 47 47 46 46 45
#i# 36 54 78 132 1
## 41 41 41 40 39
#i# 120 41 52 121 119
## 35 35 33 32 30
#i# 135 14 101 116 74
## 27 26 25 25 25

summary (as.factor(data_district))

#Hit

1 10 11 12 13 14 15 17 18 19

## 341 293 395 77 346 272 183 454 221 216
data_district=as.data.frame(data_district)

data_address=matrix(NA, nrow(data))
for(i in 1:nrow(data)){

if ('is.na(data$raw_address[i])){

39
112
34
93
63
75
20
63
51
58
7
49
28
45
44
39
50
30
82
25

2 20 21

,2)02]

131
110
22
88
31
74
12
62
67
57
117
48
40
44
38
37
21
29
124
24

3

',3))

134
110
42
88
70
74
15
62
93
57
58
48
55
43
46
37
64
29
25
24

4 5

53
110
72
88
95
69
91
62

56
92
48
26
42
125
36
66
29
57
24

6 7

3 179 338 524 330 390 445 452

data_address[i,1]=paste(data$raw_address[i] ,data$subtitle[i],

}

}

data_address=as.data.frame(data_address)
colnames(data_address)="'address'
head(data_address)

#it

## 1 Calle de Godella, 64, San Cristébal,

## 2 Calle del Talco, 68, San Andrés,

## 3 Calle de la Unanimidad, 67, Los Rosales,

## 4 Calle de Anoeta, 63, Los Angeles,

## 5 Concepcidén de la 0Oliva, 21, Butarque,
6

#i#t

Calle Arroyo de la Bulera, 31, Butarque,

address
Madrid
Madrid
Madrid
Madrid
Madrid
Madrid

115

113
105
90
87
59
67
100
61
5
54
24
47
56
42
63
36
71
29
(Other)
330

8 9
385 443
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## 4

data=subset(data,

-c(buy_price_by_area,rent_price,parking_price,

is_parking_included_in_price,is_floor_under,has_central_heating,
title,subtitle,raw_address,street_name,street_number,
neighborhood_id,is_exact_address_hidden,has_terrace,has_green_zones))

dim(data)
## [1] 6287 28
# Errori nei Dat?d

round(colSums(is.na(data))/nrow(data),3)*100 # percentuali di dati mancantt

## buy_price sq_mt_built sq_mt_useful
#it 0.0 0.1 58.2
#Hit sq_mt_allotment built_year n_bathrooms
#it 97.3 69.3 0.1
#Hit n_floors n_rooms energy_certificate
#it 95.8 0.0 32.0
## floor house_type_id is_accessible
#i# 8.5 0.0 81.1
## is_exterior is_renewal_needed is_new_development
#i# 8.0 0.0 2.3
## is_orientation_north is_orientation_south is_orientation_east
#i# 51.6 51.6 51.6
## is_orientation_west has_ac has_fitted_wardrobes
## 51.6 51.8 39.4
## has_1lift has_balcony has_garden
## 5.3 45.5 69.7
#i# has_parking has_pool has_storage_room
## 0.0 70.1 61.3
## has_individual_heating

##

48.5

data[sapply(data,is.logical)]=1lapply(data[sapply(data,is.logical)],as.factor)
data[sapply(data,is.character)]=lapply(datal[sapply(data,is.character)],as.factor)
summary (data)

#i# buy_price sq_mt_built sq_mt_useful sq_mt_allotment
## Min. 42000 Min. : 20.0 Min. : 1.00 Min. : 1.0
## 1st Qu.: 200000 1st Qu.: 69.0 1st Qu.: 59.00 1st Qu.: 97.5
## Median : 324000 Median : 93.0 Median : 78.00 Median :250.0
## Mean : 458508 Mean :114.6 Mean : 91.91 Mean :277.2
## 3rd Qu.: 564500 3rd Qu.:132.0 3rd Qu.:106.00 3rd Qu.:360.0
## Max. : 7525000 Max. :920.0 Max. :750.00 Max. :994.0
#it NA's :9 NA's :3658 NA's 16115
## built_year n_bathrooms n_floors n_rooms

## Min. :1850  Min. : 1.0 Min. :1.000 Min. : 0.000

## 1st Qu.:1960 1st Qu.: 1.0 1st Qu.:2.000 1st Qu.: 2.000

## Median :1975 Median : 2.0 Median :3.000 Median : 3.000

## Mean 11976 Mean 1.8 Mean :3.095 Mean : 2.657



#it
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#Hit
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#it
##
#it
##
#i#t
##
#i#
#i#
#Hi#t
#i#
##

3rd Qu.:2003 3rd Qu
Max. 12022 Max.
NA's 14356 NA's
energy_certificate
High: 748 Mi
Low :3525 1s
NA's:2014 Me
Me
3r
Ma
NA
is_exterior is_renew
FALSE: 577 FALSE:54
TRUE :5210 TRUE : 8
NA's : 500
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.. 2.0 3rd Qu.:4.000 3rd Qu.: 3.000

:11.0 Max. :5.000 Max. :24.000

:5 NA's 16025

floor house_type_id is_accessible
n. :-1.00 Apartment :5591 TRUE:1186
t Qu.: 1.00 Attic : 391 NA's:5101
dian : 2.00 Independent: 305
an 1 2.61
d Qu.: 4.00
X. : 9.00
's :536
al_needed is_new_development is_orientation_north
58 FALSE:4999 FALSE:2283
29 TRUE :1142 TRUE : 758

NA's : 146 NA's :3246

is_orientation_south is_orientation_east is_orientation_west has_ac

FALSE:1572
TRUE :1469
NA's :3246

has_fitted_wardrobes

TRUE:3810
NA's:2477

has_pool
TRUE: 1877
NA's:4410

FALSE:1810 FALSE:2028 TRUE:3033
TRUE :1231 TRUE :1013 NA's:3254
NA's :3246 NA's :3246

has_lift has_balcony has_garden has_parking
FALSE:1311  TRUE:3425 TRUE:1907  FALSE:3897
TRUE :4640 NA's:2862 NA's:4380 TRUE :2390
NA's : 336

has_storage_room has_individual_heating

TRUE:2431
NA's:3856

FALSE: 857
TRUE :2381
NA's :3049

data$has_ac=impute(data$has_ac,FALSE)
data$has_fitted_wardrobes=impute(data$has_fitted_wardrobes,FALSE)
data$has_balcony=impute(data$has_balcony,FALSE)
data$has_garden=impute (data$has_garden,FALSE)
data$has_storage_room=impute(data$has_storage_room,FALSE)
data$has_pool=impute(data$has_pool,FALSE)

data=subset (data, =

is_accessible)

round (colSums (is.na(data))/nrow(data),3)*100



#it
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#i#t

#i#
##
#i#t
##
#i#t
##
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buy_price sq_mt_built sq_mt_useful
0.0 0.1 58.2
sq_mt_allotment built_year n_bathrooms
97.3 69.3 0.1
n_floors n_rooms energy_certificate
95.8 0.0 32.0
floor house_type_id is_exterior
8.5 0.0 8.0
is_renewal _needed is_new_development is_orientation_north
0.0 2.3 51.6
is_orientation_south is_orientation_east is_orientation_west
51.6 51.6 51.6
has_ac has_fitted_wardrobes has_lift
0.0 0.0 5.3
has_balcony has_garden has_parking
0.0 0.0 0.0
has_pool has_storage_room has_individual_heating
0.0 0.0 48.5
# Geocodifica degli Indirizzi
data_geo=geo( data_address$address, 'arcgis', latitude,
data_geo=as.data.frame(data_geo)
head(data_geo)
address latitude longitude
Calle de Godella, 64, San Cristdébal, Madrid 40.34286 -3.68896
Calle del Talco, 68, San Andrés, Madrid 40.34462 -3.71521
Calle de la Unanimidad, 67, Los Rosales, Madrid 40.35811 -3.68510
Calle de Anoeta, 63, Los Angeles, Madrid 40.35110 -3.70180
Concepcidén de la 0liva, 21, Butarque, Madrid 40.35411 -3.68135
Calle Arroyo de la Bulera, 31, Butarque, Madrid 40.33846 -3.67963

#i#t

1
2
3
4
5
6

data_coord=data_geo[,c(3,2)]
colnames(data_coord)=c('x','y")
summary (data_coord)

#i#
##
#i#
##
#i#
##
#i#t

X y
Min. :-3.884 Min. :40.33
1st Qu.:-3.712 1st Qu.:40.39
Median :-3.695 Median :40.42
Mean :-3.688 Mean :40.42
3rd Qu.:-3.664 3rd Qu.:40.45
Max. :-3.546 Max. :40.53

# Salvataggio dei Dataset

#urite_zlsz(data, 'data_incomplete.zlsz')
#urite_zlsz(data_coord, 'data_coord.zlsz')
#urite_zlsz(data_district, 'data_district.zlsz')

longitude)
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Pre-Processing 2

library(readxl)
library(osmdata)
library(ggplot2)
library(dvmisc)
library(viridis)
library(sf)
library(ggpubr)
library(geosphere)
library(writexl)

data_coord=read_excel('data_coord.xlsx"')
data_coord=as.data.frame(data_coord)
data=read_excel('data_incomplete.xlsx')
data=as.data.frame(data)

# Mappe di Madrid
## Mappa Stradale

street_major=getbb(place_name='Madrid') %>% # strade principalt
opq(timeout=100) %>%
add_osm_feature(key='highway',value=c('motorway', 'trunk', 'primary')) %>%
osmdata_sf ()

street_major

street_minor=getbb(place_name='Madrid') %>% # strade secondarie
opq(timeout=100) %>%
add_osm_feature(key='highway',value=c('secondary', 'tertiary')) %>%
osmdata_sf ()

street_minor

street_map=ggplot ()+
geom_sf (data=street_major$osm_lines,inherit.aes=FALSE,color='black',size=0.2) +
geom_sf (data=street_minor$osm_lines,inherit.aes=FALSE,color='black',size=0.1) +
theme_void()

street_map
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buy_price_g=quant_groups(data$buy_price, 4) # raggruppamento per quartilt
buy_price_g=as.factor(buy_price_q)
levels(buy_price_g)=c('Low', 'Medium Low', 'Medium High', 'High')

## Mappa dei Prezzi di Vendita
y_limit=c(40.3,40.55)

street_map +

geom_point ( data_coord,aes(x=x, y=y, buy_price_q), 1.5) +
scale_color_viridis( TRUE) +
coord_sf ( y_limit, FALSE) +

labs( 'Buy Price')
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Buy Price
® |ow
® Medium Low
® Medium High
High

## Prima Necessita' / Salute

supermarket_madrid=getbb( 'Madrid') %>% # supermercato
opq( 100) %>%
add_osm_feature( 'shop', 'supermarket') %>%

osmdata_sf ()
supermarket_madrid

coord_supermarket=supermarket_madrid['osm_points']
coord_supermarket=do.call(rbind,coord_supermarket) %>}, dplyr::select('osm_id', 'geometry')
coord_supermarket=st_coordinates(coord_supermarket)

hospital_madrid=getbb( 'Madrid') %>% # ospedale
opq ( 100) %>%
add_osm_feature( 'amenity’, 'hospital') %>%

osmdata_sf ()
hospital_madrid

coord_hospital=hospital_madrid['osm_points']
coord_hospital=do.call(rbind,coord_hospital) %>, dplyr::select('osm_id', 'geometry')
coord_hospital=st_coordinates(coord_hospital)

pharmacy_madrid=getbb( 'Madrid') %>% # farmacia
opq( 100) %>%
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add_osm_feature( 'amenity', 'pharmacy') %>%
osmdata_sf ()
pharmacy_madrid

coord_pharmacy=pharmacy_madrid['osm_points']
coord_pharmacy=do.call(rbind,coord_pharmacy) %>} dplyr::select('osm_id', 'geometry')
coord_pharmacy=st_coordinates (coord_pharmacy)

supermarket_map=street_map +
geom_sf ( supermarket_madrid$osm_points, '#F8766D"' , 0.75) +
coord_sf( y_limit, FALSE)

hospital_map=street_map +
geom_sf ( hospital_madrid$osm_points, '#00BA38', 0.75) +
coord_sf( y_limit, FALSE)

pharmacy_map=street_map +

geom_sf ( pharmacy_madrid$osm_points, '#619CFF ', 0.75) +
coord_sf( y_limit, FALSE)
health_map=ggarrange (ggarrange (supermarket_map,hospital_map, 2
c('Supermarket', 'Hospital')),
pharmacy_map, 'Pharmacy’, 2, 20, -3)

annotate_figure(health_map, text_grob('Healthcare', 'blue’, 20))
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Healthcare
Hospital

## Finanza

post_madrid=getbb( '"Madrid') %>% # ufficio postale
opq ( 100) %>%
add_osm_feature( 'amenity', 'post_office') %>%

osmdata_sf ()
post_madrid

coord_post=post_madrid['osm_points']
coord_post=do.call(rbind, coord_post) %>} dplyr::select('osm_id','geometry')
coord_post=st_coordinates(coord_post)

bank_madrid=getbb( 'Madrid') %>% # banca
opq( 100) %>%
add_osm_feature( 'amenity', 'bank') %>%

osmdata_sf ()
bank madrid
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coord_bank=bank_madrid['osm_points']
coord_bank=do.call(rbind, coord_bank) %>% dplyr::select('osm_id','geometry')
coord_bank=st_coordinates(coord_bank)

post_map=street_map +
geom_sf ( post_madrid$osm_points, '"#F8766D', 0.75) +
coord_sf( y_limit, FALSE)

bank_map=street_map +

geom_sf ( bank_madrid$osm_points, "#00BFC4', 0.75) +

coord_sf( y_limit, FALSE)
finance_map=ggarrange (post_map,bank_map, c('Post Office','Bank'), 3)
annotate_figure(finance_map, text_grob('Finance', 'blue', 20, 1))

Finance
Post Office Bank

## Educazione

university_madrid=getbb( 'Madrid') %>% # universita'
opq( 100) %>%
add_osm_feature( 'amenity’, 'university') %>%

osmdata_sf ()
university_madrid
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coord_university=university_madrid['osm_points']

coord_university=do.call(rbind,coord_university) %>% dplyr::select('osm_id','geometry')

coord_university=st_coordinates(coord_university)

school_madrid=getbb( '"Madrid') %>% # scuola dell'obbligo
opq( 100) %>%
add_osm_feature( 'amenity', 'school') %>%

osmdata_sf ()
school_madrid

coord_school=school_madrid['osm_points']
coord_school=do.call(rbind,coord_school) %>/, dplyr::select('osm_id', 'geometry')
coord_school=st_coordinates(coord_school)

kindergarten_madrid=getbb( '"Madrid') %>% # scuola dell'infanzia
opq ( 100) %>%
add_osm_feature( 'amenity', 'kindergarten') %>%

osmdata_sf ()
kindergarten_madrid

coord_kindergarten=kindergarten_madrid['osm_points']
coord_kindergarten=do.call(rbind,coord_kindergarten) %>} dplyr::select('osm_id'
coord_kindergarten=st_coordinates(coord_kindergarten)

university_map=street_map +
geom_sf ( university_madrid$osm_polygons, '#F8766D', '#F8766D') +
coord_sf( y_limit, FALSE)

school_map=street_map +
geom_sf ( school_madrid$osm_points, '#00BA38', 0.75) +
coord_sf( y_limit, FALSE)

kindergarten_map=street_map +

geom_sf ( kindergarten_madrid$osm_points, '#619CFF ', 0.75) +
coord_sf( y_limit, FALSE)
education_map=ggarrange (ggarrange (university_map,school_map, 2,
c('University', 'School')),
kindergarten_map, 'Kindergarten', 2, 20,

annotate_figure(education_map, text_grob('Education', 'blue', 20))

, 'geometry')

-2)
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Education
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## Trasporti

train_madrid=getbb(place_name='Madrid') %>% # stazione det trent
opq(timeout=100) %>%
add_osm_feature(key='building',value='train_station') %>%
osmdata_sf ()

train_madrid

coord_train=train_madrid['osm_points']
coord_train=do.call(rbind,coord_train) %>/ dplyr::select('osm_id', 'geometry')
coord_train=st_coordinates(coord_train)

bus_madrid=getbb(place_name='Madrid') %>} # stazione dei bus
opq(timeout=100) %>%
add_osm_feature(key='amenity',value='bus_station') %>%
osmdata_sf ()

bus_madrid
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coord_bus=bus_madrid['osm_points']
coord_bus=do.call(rbind,coord_bus) %>} dplyr::select('osm_id','geometry')
coord_bus=st_coordinates(coord_bus)

airport_madrid=getbb( 'Madrid') %>% # aeroporto
opq ( 100) %>%
add_osm_feature( 'aeroway', 'aerodrome') %>%

osmdata_sf ()
airport_madrid

coord_airport=airport_madrid['osm_points']
coord_airport=do.call(rbind,coord_airport) %>, dplyr::select('osm_id', 'geometry')
coord_airport=st_coordinates(coord_airport)

train_map=street_map +
geom_sf ( train_madrid$osm_points, '#F8766D"' , 0.75) +
coord_sf( y_limit, FALSE)

bus_map=street_map +
geom_sf ( bus_madrid$osm_points, '#00BA38"', 0.75) +
coord_sf( y_limit, FALSE)

airport_map=street_map +

geom_sf ( airport_madrid$osm_polygons, '#619CFF ', '#619CFF') +
coord_sf( y_limit, FALSE)
transport_map=ggarrange (ggarrange (train_map,bus_map, 2,
c('Train Station', 'Bus Station')),
airport_map, "Airport', 2, 20, -3.5)

annotate_figure(transport_map, text_grob('Transport', 'blue', 20))
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## Intrattenimento

gym_madrid=getbb(
opq ( 100) %>%
add_osm_feature(
osmdata_sf ()
gym_madrid
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'Madrid') %>% # palestra

'leisure', 'fitness centre') %>%

coord_gym=gym_madrid['osm_points']
coord_gym=do.call (rbind,coord_gym) %>} dplyr::select('osm_id','geometry')
coord_gym=st_coordinates(coord_gym)

park_madrid=getbb(
opq ( 100) %>%
add_osm_feature (
osmdata_sf ()
park_madrid

'Madrid') %>% # parco

'leisure', 'park') %>%
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coord_park=park_madrid['osm_points']
coord_park=do.call(rbind,coord_park) %>% dplyr::select('osm_id','geometry')
coord_park=st_coordinates(coord_park)

stadium_madrid=getbb( 'Madrid') %>% # stadio
opq ( 100) %>%
add_osm_feature( 'building’, 'stadium') %>%

osmdata_sf ()
stadium_madrid

coord_stadium=stadium_madrid['osm_points']
coord_stadium=do.call(rbind,coord_stadium) %>, dplyr::select('osm_id', 'geometry')
coord_stadium=st_coordinates(coord_stadium)

disco_madrid=getbb( '"Madrid') %>% # discoteca
opq ( 100) %>%
add_osm_feature( 'amenity', 'nightclub') %>%

osmdata_sf ()
disco_madrid

coord_disco=disco_madrid['osm_points']
coord_disco=do.call(rbind,coord_disco) %> dplyr::select('osm_id', 'geometry')
coord_disco=st_coordinates(coord_disco)

cinema_madrid=getbb( 'Madrid') %>% # cinema
opq ( 100) %>%
add_osm_feature( 'amenity', 'cinema') %>%

osmdata_sf ()
cinema_madrid

coord_cinema=cinema_madrid['osm_points']
coord_cinema=do.call(rbind,coord_cinema) %>% dplyr::select('osm_id','geometry')
coord_cinema=st_coordinates (coord_cinema)

library_madrid=getbb( 'Madrid') %>% # biblioteca
opq( 100) %>%
add_osm_feature( 'amenity', 'library') %%

osmdata_sf ()
library_madrid

coord_library=library_madrid['osm_points']
coord_library=do.call(rbind,coord_library) %>% dplyr::select('osm_id','geometry')
coord_library=st_coordinates(coord_library)

gym_map=street_map +
geom_sf ( gym_madrid$osm_points, "#F8766D' , 0.75) +
coord_sf( y_limit, FALSE)
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park_map=street_map +
geom_sf ( park_madrid$osm_polygons, "#B79F00', "#B79F00') +
coord_sf( y_limit, FALSE)

stadium_map=street_map +
geom_sf ( stadium_madrid$osm_points, '#00BA38"', 0.75) +
coord_sf( y_limit, FALSE)

disco_map=street_map +
geom_sf ( disco_madrid$osm_points, '#00BFC4 ', 0.75) +
coord_sf( y_limit, FALSE)

cinema_map=street_map +
geom_sf ( cinema_madrid$osm_points, '"#619CFF', 0.75) +
coord_sf( y_limit, FALSE)

library_map=street_map +
geom_sf ( library_madrid$osm_points, '#F564E3", 0.75) +
coord_sf( y_limit, FALSE)

entertainment_map=ggarrange (gym_map,park_map,stadium_map,disco_map,cinema_map,library_map,
c('Gym', 'Park','Stadium', 'Disco', 'Cinema', 'Library'),
1, 3) 2)

annotate_figure(entertainment_map, text_grob(‘Entertainment‘, 'blue’, 20, 0.3))
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## Turismo

historic_madrid=getbb( 'Madrid') %>% # cinema
opq ( 100) %>%
add_osm_feature( 'historic', 'building') %W>%

osmdata_sf ()
historic_madrid

coord_historic=historic_madrid['osm_points']
coord_historic=do.call(rbind,coord_historic) %>} dplyr::select('osm_id','geometry')
coord_historic=st_coordinates(coord_historic)

attraction_madrid=getbb( '"Madrid') %>% # cinema
opq ( 100) %>%
add_osm_feature( 'tourism', 'attraction') %>%

osmdata_sf ()
attraction_madrid

coord_attraction=attraction_madrid['osm_points']
coord_attraction=do.call(rbind,coord_attraction) %>% dplyr::select('osm_id', 'geometry')
coord_attraction=st_coordinates(coord_attraction)

historic_map=street_map +
geom_sf ( historic_madrid$osm_points, "#F8766D"', 0.75) +
coord_sf( y_limit, FALSE)

attraction_map=street_map +

geom_sf ( attraction_madrid$osm_points, '#00BFC4 ', 0.75) +
coord_sf( y_limit, FALSE)
tourism_map=ggarrange (historic_map,attraction_map, c('Historic', 'Attraction'), 3)

annotate_figure(tourism_map, text_grob('Tourism', 'blue', 20, 1))
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# Calcolo delle Distanze Minime

house_coord=as.data.frame(cbind(1:nrow(data_coord) ,data_coord))
names (house_coord)=c('id', 'long', 'lat')

min_dist=function(loc){
from=house_coord [house_coord$id==1oc,]
distance=distHaversine(from[,2:3],to)
min=data.frame( loc, min(distance))
return(min)

to=coord_supermarket
d_supermarket=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames (d_supermarket)="'d_supermarket'

to=coord_hospital
d_hospital=bind_rows (lapply(house_coord$id,min_dist)) [2]
colnames(d_hospital)='d_hospital’

to=coord_pharmacy
d_pharmacy=bind_rows(lapply(house_coord$id,min_dist)) [2]

colnames (d_pharmacy)="'d_pharmacy'

to=coord_post
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d_post=bind_rows(lapply(house_coord$id,min_dist)) [2]
colnames(d_post)="'d_post'

to=coord_bank
d_bank=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames(d_bank)='d_bank'

to=coord_university
d_university=bind_rows(lapply(house_coord$id,min_dist)) [2]
colnames(d_university)='d_university'

to=coord_school
d_school=bind_rows (lapply(house_coord$id,min_dist)) [2]
colnames (d_school)='d school'

to=coord_kindergarten
d_kindergarten=bind_rows(lapply (house_coord$id,min_dist)) [2]
colnames(d_kindergarten)="'d_kindergarten'

to=coord_train
d_train=bind_rows(lapply (house_coord$id,min_dist)) [2]
colnames(d_train)='d_train'

to=coord_bus
d_bus=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames(d_bus)='d_bus'

to=coord_airport
d_airport=bind_rows(lapply(house_coord$id,min_dist)) [2]
colnames(d_airport)='d_airport'

to=coord_gym
d_gym=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames(d_gym)='d_gym'

to=coord_park
d_park=bind_rows(lapply(house_coord$id,min_dist)) [2]
colnames(d_park)='d_park'

to=coord_stadium
d_stadium=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames(d_stadium)='d stadium'

to=coord_library
d_library=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames(d_library)='d_library'

to=coord_disco
d_disco=bind_rows (lapply (house_coord$id,min_dist)) [2]
colnames(d_disco)='d_disco'

to=coord_cinema
d_cinema=bind_rows (lapply(house_coord$id,min_dist)) [2]
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colnames(d_cinema)='d_cinema'

to=coord_historic
d_historic=bind_rows(lapply (house_coord$id,min_dist)) [2]
colnames(d_historic)='d_historic'

to=coord_attraction
d_attraction=bind_rows(lapply(house_coord$id,min_dist)) [2]
colnames(d_attraction)='d_attraction'

data_distance=as.data.frame(cbind(d_supermarket,d_hospital,d_pharmacy,d_post,d_bank,
d_university,d_school,d_kindergarten,d_train,d_bus,
d_airport,d_gym,d_park,d_stadium,d_disco,d_cinema,
d_library,d_historic,d_attraction))

data_distance=round(data_distance,0)

#View(data_distance)

#uwrite_zlsz(data_distance, 'data_distance.zlsz')
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Pre-Processing 3

library(readxl)
library(caret)
library(mice)
library(Hmisc)
library(Iscores)
library(data.table)
library(mltools)
library(writexl)

data=read_excel('data_incomplete.xlsx')
data_coord=read_excel('data coord.xlsx')
data_distance=read_excel('data_distance.xlsx')
data_district=read_excel('data district.xlsx')
data=as.data.frame(data)
data_coord=as.data.frame(data_coord)
data_distance=as.data.frame(data_distance)
data_district=as.data.frame(data_district)

datal[sapply(data,is.logical)]l=1lapply(data[sapply(data,is.logical)],as.factor)
data[sapply(data,is.character)]=1lapply(data[sapply(data,is.character)],as.factor)

data$energy_certificate=factor(data$energy_certificate)
data$energy_certificate=relevel (data$energy_certificate, "Low')

data$house_type_id=factor(data$house_type_id)

data$house_type_id=relevel (data$house_type_id, 'Apartment')

str(data)

## 'data.frame': 6287 obs. of 27 variables:

## $ buy_price : num 85000 144247 195000 205000 100000 ...

## $ sq_mt_built : num 64 94 123 109 61 97 93 74 125 158 ...

## $ sq_mt_useful : num 60 54 104 90 56 73 70 NA NA NA ...

## $ sq mt_allotment : num NA NA NA NA NA NA NA NA NA NA ...

## $ built_year : num 1960 NA 1992 1983 1966 ...

## $ n_bathrooms cnum 1 222122122 ...

## $ n_floors : num NA NA NA NA NA NA NA NA NA NA ...

## $ n_rooms cnum 2 233322333...

## $ energy_certificate : Factor w/ 2 levels "Low","High": 1 NA 1 1 1 NANANA 1 1

## $ floor c:num 3143507174 ...

## $ house_type_id : Factor w/ 3 levels "Apartment","Attic",..: 1111111112 ...
## ¢ is_exterior : Factor w/ 2 levels "FALSE","TRUE": 2 222222222 ...

## $ is_renewal_needed : Factor w/ 2 levels "FALSE","TRUE": 1111111111

## $ is_new_development : Factor w/ 2 levels "FALSE","TRUE": 1 111122111 ...

## ¢ is_orientation_north : Factor w/ 2 levels "FALSE","TRUE": 1 NA 1 1 2 NA NA 1 NA NA ...



#it
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t

6B hH P D H P D PP PH PP

is_orientation_south
is_orientation_east
is_orientation_west
has_ac
has_fitted_wardrobes
has_1lift

has_balcony
has_garden
has_parking

has_pool
has_storage_room

# Data Splitting

set.seed(123)

sample=createDataPartition(data$buy_price,

: Factor
: Factor
: Factor
: Factor
: Factor
: Factor
: Factor
: Factor
: Factor
: Factor
: Factor
has_individual_heating:

Factor

ind_train=rep(FALSE,dim(data) [1])
ind_train[sample]=TRUE

train=data[sample,]
test=data[-sample,]

train_coord=data_coord[sample,]
test_coord=data_coord[-sample,]

train_distance=data_distance[sample,]
test_distance=data_distance[-sample,]

w/
w/
w/
w/
w/
w/
w/
w/
w/
w/
w/
w/

NNDNDNDNNDNDNDNDNDDNDDN

levels
levels
levels
levels
levels
levels
levels
levels
levels
levels
levels
levels

0.8,

train_district=as.data.frame(data_district[sample,])
test_district=as.data.frame(data_district[-sample,])

c(dim(train) [1] ,dim(test) [1])

## [1] 5033 1254

# Dati Mancant?t

round(colSums(is.na(train))/nrow(train),3)*100

#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t

buy_price

0.0
sq_mt_allotment
97.4

n_floors

96.0

floor

8.7
is_renewal_needed
0.0
is_orientation_south

sq_mt_built
0.1
built_year
68.9
n_rooms

0.0

house_type_id

0.0

is_new_development

2.5

is_orientation_east
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"FALSE" ,"TRUE": 1 NA 1 2 2 NA NA 2 NA NA ...
"FALSE","TRUE": 1 NA 2 1 1 NA NA 1 NA NA ...
"FALSE" ,"TRUE": 2 NA 1 1 1 NA NA 1 NA NA ...
"FALSE","TRUE": 21 21111112 .
"FALSE","TRUE": 1 222111222,
"FALSE","TRUE": 1 222122122,
"FALSE","TRUE": 1112222122,
"FALSE","TRUE": 1111122122,
"FALSE","TRUE": 1 111111112 .
"FALSE","TRUE": 1111122122,
"FALSE","TRUE": 1 212111222 ...
"FALSE" ,"TRUE": NA 2 NA NA 2 NANA 22 2 ...
10, FALSE) # splitting stratificato
sq_mt_useful
58.6
n_bathrooms
0.1
energy_certificate
31.9
is_exterior
8.0
is_orientation_north
52.5

is_orientation_west



138

## 52.5 52.5 52.5
#i#t has_ac has_fitted_wardrobes has_lift
## 0.0 0.0 5.3
#i# has_balcony has_garden has_parking
#it 0.0 0.0 0.0
## has_pool has_storage_room has_individual_heating
#it 0.0 0.0 48.6
round(colSums(is.na(test))/nrow(test),3)*100

#it buy_price sq_mt_built sq_mt_useful
#it 0.0 0.2 56.4
## sq_mt_allotment built_year n_bathrooms
#it 96.9 70.7 0.0
## n_floors n_rooms energy_certificate
#it 95.2 0.0 32.4
## floor house_type_id is_exterior
#it 7.9 0.0 7.7
## is_renewal_needed is_new_development is_orientation_north
#it 0.0 1.5 48.0
## is_orientation_south is_orientation_east is_orientation_west
#it 48.0 48.0 48.0
## has_ac has_fitted_wardrobes has_1lift
#it 0.0 0.0 5.7
#it has_balcony has_garden has_parking
#it 0.0 0.0 0.0
## has_pool has_storage_room has_individual_heating
#it 0.0 0.0 48.2

## Verifica della Soglia

### 507,
train_50=subset (train, -c(sq_mt_useful,sq_mt_allotment,n_floors,built_year,is_orientation_north,

is_orientation_south,is_orientation_west,is_orientation_east))

imp_50=mice(train_50,m=1, "pmm' , 'monotone’, 123, FALSE)
train_50_complete=complete (imp_50,1)

### 257,

train_25=subset(train_50, -c(energy_certificate,has_individual_heating))
imp_25=mice(train_25,m=1, "pmm’ , 'monotone’', 123, FALSE)
train_25_complete=complete(imp_25,1)

### 57,

train_b=subset (train_25, -c(floor,is_exterior,has_1ift))

imp_b5=mice(train_5,m=1, 'pmm’ , 'monotone’, 123, FALSE)
train_5_complete=complete (imp_5,1)

set.seed(123)

control=trainControl( "ew 10)

tune_rf=expand.grid( 10, 'variance', 10)
fit_50=train(buy_price-~., train_b0_complete, 'ImStepAIC', 'both',
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log(nrow(train_50_complete)), control, FALSE)
fit_50$results[which.min(fit_50$results$RMSE),]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

#it 1 none 239524.9 0.7117134 144733.1 33484.33 0.02480867 8648.584

fit_rf_50=train(buy_price~., train_50_complete, 'ranger', "impurity’',
150, tune_rf, control, FALSE)

fit_rf_50%results[which.min(fit_rf_50$results$RMSE),]

## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
# 1 10 variance 10 205800.2 0.7916392 118385.1 36379.83 0.04016012
#i# MAESD

## 1 6557.227

fit_25=train(buy_price-~., train_25_complete, 'ImStepAIC', 'both',
log(nrow(train_25_complete)), control, FALSE)
fit_25$%results[which.min(fit_25$results$RMSE),]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

## 1 none 242668.9 0.7044997 144144.5 19216.48 0.03629738 6340.727

fit_rf_25=train(buy_price~., train_25_complete, 'ranger', "impurity’',
150, tune_rf, control)

fit_rf_25$results[which.min(fit_rf_25$results$RMSE), ]

## mtry splitrule min.node.size RMSE Rsquared MAE RMSESD RsquaredSD
## 1 10 variance 10 215631.7 0.7634431 121296.7 22544.7 0.03233627
## MAESD

## 1 3904.114

fit_b=train(buy_price-~., train_5_complete, 'ImStepAIC', 'both',
log(nrow(train_5_complete)), control, FALSE)
fit_5$results[which.min(fit_5$results$RMSE),]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

## 1 none 245647.4 0.6938566 147645.7 26442.07 0.04325232 7822.453

fit_rf_b=train(buy_price-~., train_5_complete, 'ranger', '"impurity’',
150, tune_rf, control)

fit_rf_5$results[which.min(fit_rf_ 5$results$RMSE), ]

## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
# 1 10 variance 10 219477.6 0.7541298 127560.7 37976.66 0.04411452
## MAESD

## 1 8639.789
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summary (fit_50$finalModel)

#it

## Call:

## Im(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +

## energy_certificateHigh + floor + house_type_idAttic + house_type_idIndependent +
# is_exteriorTRUE + is_new_developmentTRUE + has_acTRUE + has_1iftTRUE +
## has_gardenTRUE + has_individual_heatingTRUE, data = dat)

#i#

## Residuals:

## Min 1Q Median 3Q Max

## -1635973 -109130 -6965 82591 4549880

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -59230.90 17497.42 -3.385 0.000717 s*x*x*
## sq_mt_built 4040.98 84.69 47.713 < 2e-16 *xx
## n_bathrooms 86195.78 6489.67 13.282 < 2e-16 *x*x
## n_rooms -22207.90 3831.04 -5.797 7.17e-09 **x*
## energy_certificateHigh 51127.04 9471.19  5.398 7.04e-08 ***
## floor 10817.87 1771.93 6.105 1.10e-09 **x
## house_type_idAttic 112101.11 14653.01 7.650 2.39e-14 **x
## house_type_idIndependent -352311.19  20506.51 -17.180 < 2e-16 **x*
## is_exteriorTRUE -68900.15 12015.34 -5.734 1.04e-08 ***
## is_new_developmentTRUE 99636.94 11388.64 8.749 < 2e-16 **x
## has_acTRUE 26011.16 7514.67 3.461 0.000542 **x*
## has_liftTRUE 33021.02 9375.02 3.522 0.000432 *x*
## has_gardenTRUE -46146.69 8000.68 -5.768 8.51e-09 **x*
## has_individual_heatingTRUE -67668.71 9280.28 -7.292 3.54e-13 **x
## ———

## Signif. codes: O '**xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#i#

## Residual standard error: 239000 on 5019 degrees of freedom
## Multiple R-squared: 0.71, Adjusted R-squared: 0.7093
## F-statistic: 945.4 on 13 and 5019 DF, p-value: < 2.2e-16

varImp(fit_50) # importanza delle wariabili nel modello regressivo lineare

## loess r-squared variable importance

#i#t

## Overall
## sq_mt_built 100.0000
## n_bathrooms 84.1615
## n_rooms 40.7187
## house_type_id 22.2370
## has_lift 14.4727
## has_parking 12.6594
## has_pool 10.8137
## has_storage_room 6.9495
## is_new_development 6.8684
## has_individual_heating 6.1837
## has_garden 5.2336
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## energy_certificate 4.9279
## has_balcony 4.0931
## is_exterior 1.9452
## floor 1.4476
## has_fitted_wardrobes 0.5273
## has_ac 0.3816
## is_renewal _needed 0.0000

varImp(fit_rf_50) # importanza delle wariabili nel Random Forest

## ranger variable importance

##

## Overall
## sq_mt_built 100.0000
## n_bathrooms 39.9546
## n_rooms 10.9108
## floor 7.5507
## house_type_idIndependent 3.7786
## energy_certificateHigh 3.2569
## has_liftTRUE 3.0410
## house_type_idAttic 2.9774
## is_new_developmentTRUE 2.7030
## has_individual_heatingTRUE 2.0715
## has_gardenTRUE 1.0370
## has_poolTRUE 0.9613
## has_fitted_wardrobesTRUE 0.9541
## has_balconyTRUE 0.8891
## has_storage_roomTRUE 0.8738
## has_acTRUE 0.8076
## has_parkingTRUE 0.6000
## is_renewal_neededTRUE 0.4228
## is_exteriorTRUE 0.0000

train=train_50
test=subset (test, -c(sq_mt_useful,sq_mt_allotment,n_floors,built_year,is_orientation_north,
is_orientation_south,is_orientation_west,is_orientation_east))

## Missing at Random (MAR)
### Imputazione Singola

train_mmm=train
train_mmm$sq_mt_built=as.numeric(impute(train_mmm$sq mt_built,mean))
train_mmm$n_bathrooms=as.numeric (impute (train_mmm$n_bathrooms,mean))
train_mmm$floor=as.numeric(impute(train_mmm$floor,mean))

mode=function(x) {

x=na.omit (x)

unig=unique (x)

uniq[which.max(tabulate (match(x,uniq)))]
}

train_mmm$is_floor_under[is.na(train_mmm$is_floor_under)]=mode(train_mmm$is_floor_under)
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train_mmm$has_lift[is.na(train_mmm$has_1ift)]=mode(train_mmm$has_1ift)
train_mmm$has_individual_heating[is.na(train_mmm$has_individual_heating)]=

mode (train_mmm$has_individual_heating)
train_mmm$is_new_development[is.na(train_mmm$is_new_development)]=

mode (train_mmm$is_new_development)
train_mmm$is_exterior[is.na(train_mmm$is_exterior)]=mode(train_mmm$is_exterior)
train_mmm$energy_certificate[is.na(train_mmm$energy_certificate)]=

mode (train_mmm$energy_certificate)

imp_lm=mice(train,m=1, c('norm.predict', 'logreg', 'polyreg', 'polr'),
'monotone’, 123, FALSE)
train_lm=complete(imp_lm,1)

imp_sr=mice(train,m=1, c('norm.nob', 'logreg', 'polyreg', 'polr'),
'monotone’, 123, FALSE)
train_sr=complete(imp_sr,1)

imp_default=mice(train, 'monotone' ,m=1, 123, FALSE)
train_default=complete (imp_default,1)

imp_pmm=mice (train,m=1, 'pmm' , 'monotone’, 123, FALSE)
train_pmm=complete (imp_pmm, 1)

imp_cart=mice(train,m=1, 'cart', 'monotone’', 123, FALSE)
train_cart=complete (imp_cart,1)

imp_rf=mice(train,m=1, 'rf', 'monotone', 123, FALSE)

train_rf=complete(imp_rf,1)

tr_imp=1list()
tr_imp[[1]]=train_mmm
tr_imp[[2]]=train_1m
tr_imp[[3]]=train_sr
tr_imp[[4]]=train_default
tr_imp[[5]]=train_pmm
tr_imp[[6]]=train_cart
tr_imp[[7]]=train_rf

imputations=1ist ()

for(i in 1:7){
imputations[[i]]=1lapply(1,function(j){
newdata=one_hot(as.data.table(tr_imp[i]))
return(newdata)
B
}

train_hot=one_hot(as.data.table(train))

#### I-Scores 1

set.seed(123)
methods=c ('MMM' , 'LM+L0OG"', 'SR+LOG', 'PMM+LOG', 'PMM', 'CART', 'RF')
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IS=Iscores(imputations,methods,train_hot,num.proj:S)
#Iscores (imputations,methods, train_hot,num.proj=10)
#Iscores (imputations,methods, train_hot,num.proj=20)
#Iscores (imputations,methods, train_hot,num.proj=50)

IS
## MMM LM+LOG  SR+LOG PMM+LOG PMM CART RF
## [1,] -2.513805 -1.878854 -1.29501 0 -0.325211 -0.224616 -0.417388

### Imputazione Multipla

imp_lm_m=mice(train,m=5,defaultMethod=c('norm.predict', 'logreg', 'polyreg', 'polr'),
visitSequence='monotone',seed=123,printFlag=FALSE)
train_lm_m=1list()
for(i in 1:5){
train_lm_m[[i]]=complete(imp_lm_m,i)

}

imp_sr_m=mice(train,m=5,defaultMethod=c('norm.nob', 'logreg', 'polyreg', 'polr'),
visitSequence='monotone',seed=123,printFlag=FALSE)
train_sr_m=1list ()
for(i in 1:5){
train_sr_m[[i]]=complete(imp_sr_m,i)

}

imp_default_m=mice(train,m=5,visitSequence='monotone',seed=123,printFlag=FALSE)
train_default_m=1ist ()
for(i in 1:5){
train_default_m[[i]]=complete(imp_default_m,i)
}

imp_pmm_m=mice(train,m=5,method='pmm',visitSequence='monotone',seed=123,printFlag=FALSE)
train_pmm_m=1ist ()
for(i in 1:5){

train_pmm_m[[i]]=complete (imp_pmm_m,i)

}

imp_cart_m=mice(train,m=5,method='cart',visitSequence='monotone',seed=123,printFlag=FALSE)
train_cart_m=1ist()
for(i in 1:5){

train_cart_m[[i]]=complete(imp_cart_m,i)

}

imp_rf_m=mice(train,m=5,method='rf',visitSequence='monotone',seed=123,printFlag=FALSE)
train_rf_m=1list()
for(i in 1:5){

train_rf_m[[i]]=complete(imp_rf_m,i)

}

imputations=1ist ()
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imputations[[1]]=1apply(1:5,function(i){
newdata=one_hot(as.data.table(train_lm _m[[i]]))
return(newdata)

b

imputations[[2]]=1lapply(1:5,function(i){
newdata=one_hot(as.data.table(train_sr_m[[i]]))
return(newdata)

)

imputations[[3]]=1lapply(1:5,function(i){
newdata=one_hot(as.data.table(train_default _m([[i]]))
return(newdata)

b

imputations[[4]]=1apply(1:5,function(i){
newdata=one_hot(as.data.table(train_pmm m[[i]]))
return(newdata)

b

imputations[[5]]=1lapply(1:5,function(i){
newdata=one_hot (as.data.table(train_cart_m[[i]]))
return(newdata)

)

imputations[[6]]=1lapply(1:5, function(i) {
newdata=one_hot(as.data.table(train_rf_m[[i]]))
return(newdata)

1))
#### I-Scores 2

#set.seed(123)
#methods=c('LM+LOG', 'SR+LOG', 'PMM+LOG', 'PMM', 'CART', 'RF')
#Iscores (imputations,methods, train_hot,num.proj=5,m=5)
#Iscores (imputations,methods, train_hot,num.proj=10,m=5)
#Iscores (imputations,methods, train_hot,num.proj=20,m=5)
#Iscores (imputations,methods, train_hot,num.proj=50,m=5)

## Selezione del Metodo di Imputazione

train=train_rf

summary (train)

#t buy_price sq_mt_built n_bathrooms n_rooms

## Min. ;42000 Min. : 20.0 Min. : 1.000 Min. : 0.000
## 1st Qu.: 202000 1st Qu.: 69.0 1st Qu.: 1.000 1st Qu.: 2.000
## Median : 321000 Median : 94.0 Median : 2.000 Median : 3.000
## Mean : 460105 Mean :115.3 Mean : 1.806 Mean 2.666
## 3rd Qu.: 565000 3rd Qu.:132.0 3rd Qu.: 2.000 3rd Qu.: 3.000
## Max. : 7525000 Max. :920.0 Max. :11.000 Max. :24.000
## energy_certificate floor house_type_id is_exterior

## Low :3953 Min. :-1.000 Apartment :4474  FALSE: 458
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## High:1080 1st Qu.: 1.000 Attic . 321 TRUE :4575
#i# Median : 2.000 Independent: 238

## Mean : 2.608

#it 3rd Qu.: 4.000

#it Max. : 9.000

## 1is_renewal_needed is_new_development has_ac has_fitted_wardrobes
## FALSE:4374 FALSE:4095 FALSE:2596  FALSE:1990

## TRUE : 659 TRUE : 938 TRUE :2437  TRUE :3043

#i#t

#it

#it

#it

## has_lift has_balcony has_garden has_parking has_pool
## FALSE:1087 FALSE:2290 FALSE:3502 FALSE:3082 FALSE:3514
## TRUE :3946 TRUE :2743 TRUE :1531 TRUE :1951 TRUE :1519
#it

#i

#it

#i

## has_storage_room has_individual_heating

## FALSE:3080 FALSE:1049

## TRUE :1953 TRUE :3984

#it

##

#it

#it

set.seed(123) # riproduzione del metodo di imputazione per il test set
pred_m=matrix(1, length(test), length(test))
diag(pred_m)=0
pred_m[1,]1=0
pred_m[,1]=0
imp_rf_test=mice(test,m=1, 'rf!', 'monotone’,
pred_m, 123, FALSE)
test_rf=complete(imp_rf_test,1)
test=test_rf

data=subset (data, -c(sq_mt_useful,sq_mt_allotment,n_floors,built_year,is_orientation_north,
is_orientation_south,is_orientation_west,is_orientation_east))

data[sample,]=train

data[-sample,]=test

data=as.data.frame(cbind(data,ind_train))

#urite_zlsz(data, 'data_completel.zlsz')
#urite_zlsz(train, 'trainl.xlsc')
#urite_zlsz(test, 'testl.zlsz')
#uwrite_zlsz(train_coord, 'train_coord.zlsz')
#urite_zlsz(test_coord, 'test_coord.zlsz')
#uwrite_zlsz(train_distance, 'train_distance.zlsz')
#urite_zlsz(test_distance, 'test_distance.zlsz')
#uwrite_zlsz(train_district, 'train_district.zlsz')
#urite_zlsz(test_district, 'test_district.zlsz')
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Analisi Esplorativa

library(readxl)
library(gclus)
library(mclust)
library(sf)
library(spdep)
library(ggplot2)
library(caret)
library(spatialreg)
library(doParallel)
library(writexl)

data=as.data.frame(read_excel('data_complete.xlsx'))
train=as.data.frame(read_excel('train.xlsx'))
test=as.data.frame(read_excel('test.xlsx'))

data_distance=as.data.frame(read_excel('data_distance.xlsx'))
train_distance=as.data.frame(read_excel('train_distance.xlsx'))
test_distance=as.data.frame(read_excel('test_distance.xlsx'))
train_district=as.data.frame(read_excel('train_district.xlsx'))
test_district=as.data.frame(read_excel('test_district.xlsx'))
data_coord=as.data.frame(read_excel('data_coord.xlsx'))
train_coord=as.data.frame(read_excel('train_coord.xlsx'))

test_coord=as.data.frame(read_excel('test_coord.xlsx'))

train[sapply(train,is.logical)]=lapply(train[sapply(train,is.logical)],as.factor)
train[sapply(train,is.character)]=lapply(train[sapply(train,is.character)],as.factor)
test [sapply(test,is.logical)]=1lapply(test[sapply(test,is.logical)],as.factor)

test [sapply(test,is.character)]=lapply(test[sapply(test,is.character)],as.factor)

attach(train)
# Analis? Univariata

## Variabile Risposta Y (Prezzo di Vendita)

summary (buy_price)

#i# Min. 1st Qu. Median Mean 3rd Qu. Max.
#it 42000 202000 321000 460105 565000 7525000
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var (buy_price)

## [1] 196444909456

par( c(1,3))
boxplot (buy_price, 'Boxplot', 'Prezzo di Vendita', '#F8766D"')
hist (buy_price, 15, 'Istogramma’, 'Prezzo di Vendita', 'Densita’, '#F8766D"')
qgnorm(buy_price, 'Q-Q Plot Normale', 'Quantile Teorico', '"Quantile Osservato')
qqline(buy_price, 'red')
Boxplot Istogramma Q-Q Plot Normale
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boxplot (log(buy_price), 'Boxplot', 'Prezzo di Vendita', '#F8766D"')
hist(log(buy_price), 15, 'Istogramma', 'Prezzo di Vendita', 'Densita’, '"#F8766D"')
qgnorm(log(buy_price), 'Q-Q Plot Normale', 'Quantile Teorico', 'Quantile Osservato')

qqline(log(buy_price), 'red')
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Boxplot Istogramma Q-Q Plot Normale
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## Variabili Numeriche

par (nfrow=c(2,4))

hist(sq_mt_built,nclass=15,main="'Superficie Costruita',
xlab='Superficie',ylab='Densita',col="'#F8766D"')

plot(as.factor(floor) ,main='Piano',xlab='Piano',ylab='Frequenza',col='#7CAE00')

plot(as.factor(n_rooms) ,main='Numero di Stanze',xlab='Stanze',ylab='Frequenza',col='#00BFC4')

plot(as.factor(n_bathrooms) ,main='Numero di Bagni',xlab='Bagni',ylab='Frequenza',col="'#C77CFF')

boxplot(sq_mt_built,ylab:'Superficie',col='#F8766D')
boxplot(as.factor(floor),ylab="'Piano',col="#7CAE00")
boxplot(as.factor(n_rooms),ylab='Stanze',col='#00BFC4')
boxplot(as.factor(n_bathrooms),ylab='Bagni',col="'#C77CFF"')
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Superficie Costruita Piano Numero di Stanze Numero di Bagni
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## Variabili Categoriche

par (nfrow=c(1,2))
plot(energy certificate,xlab='Certificazione Energetica',ylab='Frequenza',col="'#F8766D')
plot(house_type_id,xlab='Tipo di Casa',ylab='Frequenza',col='#00BFC4',horiz=TRUE)
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par (mfrow=c(1,3))

plot(is_exterior,xlab='Esterno',ylab='Frequenza',col='#F8766D"')
plot(is_renewal_needed,xlab='Necessaria Ristrutturazione',ylab='Frequenza',col='#00BA38')
plot(is_new_development,xlab='Nuova Costruzione',ylab='Frequenza',col=4)
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## Variabili di Presenza / Assenza

par (nfrow=c(3,3))

plot(has_ac,xlab='Aria Condizionata',ylab='Frequenza',col='#F8766D')
plot(has_fitted_wardrobes,xlab='Armadio a Muro',ylab='Frequenza',col='#D39200"')
plot(has_lift,xlab='Ascensore',ylab='Frequenza',col="'#93AA00"')
plot(has_balcony,xlab='Balcone',ylab='Frequenza',col="'#00BA38"')
plot(has_garden,xlab='Giardino',ylab='Frequenza',col="#00C19F"')
plot(has_parking,xlab='Parcheggio',ylab='Frequenza',col="'#00B9E3"')
plot(has_pool,xlab='Piscina',ylab='Frequenza',col="'#619CFF')
plot(has_storage_room,xlab='Ripostiglio',ylab='Frequenza',col='#DB72FB')
plot(has_individual_heating,xlab='Riscaldamento Autonomo',ylab='Frequenza',col='#FF61C3"')
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## Variabili di Distanza

par (nfrow=c(2,3))
hist(train_distance$d_supermarket,nclass=15,main='Supermercato',xlab='Distanza',ylab='Frequenza',col="#
hist(train_distance$d_hospital,nclass=15,main='0spedale’',xlab='Distanza',ylab='Frequenza',col="'#00BA38'
hist(train_distance$d_pharmacy,nclass=15,main='Farmacia',xlab='Distanza',ylab='Frequenza',col='#619CFF'
boxplot(train_distance$d_supermarket,ylab='Distanza',col='#F8766D")

boxplot (train_distance$d_hospital,ylab='Distanza',col='#00BA38")

boxplot (train_distance$d_pharmacy,ylab='Distanza',col='#619CFF')
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par (nfrow=c(2,2))

hist(train_distance$d_post,nclass=15,main='Ufficio Postale',xlab='Distanza',ylab='Frequenza',col="'#F876
hist(train_distance$d_bank,nclass=15,main='Banca',xlab='Distanza’',ylab='Frequenza',col="'#00BFC4"')
boxplot(train_distance$d_post,ylab='Distanza’',col="'#F8766D"')

boxplot (train_distance$d_bank,ylab='Distanza',col="'#00BFC4")
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par (nfrow=c(2,3))
hist(train_distance$d_university,nclass=15,main='Universita’',

xlab='Distanza',ylab='Frequenza',col="'#F8766D"')
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hist(train_distance$d_school,nclass=15,main="Scuola dell'Obbligo",

xlab='Distanza',ylab='Frequenza',col="'#00BA38"')

hist(train_distance$d_kindergarten,nclass=15,main="Scuola dell'Infanzia",

xlab='Distanza',ylab='Frequenza',col="'#619CFF')

boxplot(train_distance$d_university,ylab='Distanza’',col="#F8766D")
boxplot (train_distance$d_school,ylab='Distanza',col="'#00BA38")
boxplot(train_distance$d_kindergarten,ylab='Distanza',col="#619CFF')




155

Universita Scuola dell'Obbligo Scuola dell'Infanzia
o -
- S -
o — 8 |
o _| o
o —
—
g . g 8 g ,
c c o c
) o o o
=] o =] = S 4
o O - o o @
L © 1< <
(VR L o (VR ]
. s
n
o o
g - 8
o = o - o
T T T T T 711 I T T T 1 I T T 1
0 2000 4000 6000 0 500 1000 2000 0 500 1000 1500
Distanza Distanza Distanza
1 o (=3 ° o
° e S S ]
o _| o N 0
o —
@ g
i S | 0
3 o
o
g Y X g 8 | 8
o - ' 2 9 o
a g ! [a} a 5 N
1
S | S 4 1
B3 1 ) '
; ' —
. == .
o - _ o - _ o - _

par (nfrow=c(2,3))
hist(train_distance$d_train,nclass=15,main="'Stazione dei Treni',
xlab='Distanza',ylab='Frequenza',col="'#F8766D"')
hist(train_distance$d_bus,nclass=15,main="'Stazione dei Bus',
xlab='Distanza',ylab='Frequenza',col="'#00BA38"')
hist(train_distance$d_airport,nclass=15,main="'Aeroporto’,
xlab='Distanza',ylab='Frequenza',col="'#619CFF')
boxplot(train_distance$d_train,ylab='Distanza',col="'#F8766D")
boxplot (train_distance$d_bus,ylab='Distanza',col='#00BA38")
boxplot(train_distance$d_airport,ylab='Distanza',col="#619CFF')
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par (nfrow=c(2,3))
hist(train_distance$d_gym,nclass=15,main='Palestra’',xlab='Distanza',ylab="'Frequenza',col="'#F8766D"')
hist(train_distance$d_park,nclass=15,main='Parco',xlab='Distanza’',ylab='Frequenza',col="'#00BA38")
hist(train_distance$d_stadium,nclass=15,main='Stadio',xlab='Distanza',ylab='Frequenza',col="'#619CFF')
boxplot (train_distance$d_gym,ylab='Distanza',col="'#F8766D")
boxplot(train_distance$d_park,ylab='Distanza',col="'#00BA38")
boxplot(train_distance$d_stadium,ylab='Distanza',col="#619CFF')
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par (nfrow=c(2,3))
hist(train_distance$d_disco,nclass=15,main='Discoteca’',xlab='Distanza',ylab="'Frequenza',col="'#F8766D"')
hist(train_distance$d_cinema,nclass=15,main="'Cinema',xlab='Distanza’',ylab='Frequenza',col="'#00BA38"')
hist(train_distance$d_library,nclass=15,main='Biblioteca',xlab='Distanza',ylab='Frequenza',col="'#619CFF
boxplot (train_distance$d_disco,ylab='Distanza',col="'#F8766D")
boxplot(train_distance$d_cinema,ylab='Distanza’',col='#00BA38")

boxplot (train_distance$d_library,ylab='Distanza’',col='#619CFF')
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par (nfrow=c(2,2))
hist(train_distance$d_historic,nclass=15,main='Edificio Storico',
xlab='Distanza',ylab='Frequenza',col="'#F8766D"')
hist(train_distance$d_attraction,nclass=15,main='Attrazione Turistica',
xlab='Distanza',ylab='Frequenza',col="'#00BFC4')
boxplot(train_distance$d_historic,ylab='Distanza',col="'#F8766D')
boxplot(train_distance$d_attraction,ylab='Distanza’',col="'#00BFC4"')
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# Analisi Bivariata

## Numeriche - Numeriche

train_num=train[,sapply(train,is.numeric)]

corr=cor (train_num)
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Attrazione Turistica
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colors=dmat.color(abs(corr) ,breaks=c(0,0.3,0.7,1) ,col=c('#D2F4F2"', '#FDFFDA', '#FA4BBDD'))

colnames (train_num)=c('Prezzo di Vendita', 'Superficie Costruita', 'Numero di Bagni',
'Numero di Stanze',"Piano d'Ingresso")

cpairs(train_num,panel.colors=colors,gap=0.5,main="'Diagrammi Multipli') # scatterplots
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Diagrammi Multipli
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round(corr,3) # correlazione lineare di Pearson
## buy_price sq_mt_built n_bathrooms n_rooms floor
## buy_price 1.000 0.793 0.732 0.509 0.105
## sq_mt_built 0.793 1.000 0.820 0.660 0.065
## n_bathrooms 0.732 0.820 1.000 0.635 0.074
## n_rooms 0.509 0.660 0.635 1.000 0.119
## floor 0.105 0.065 0.074 0.119 1.000

## Numeriche - Categoriche

par ( c(1,2))

boxplot (buy_price~house_type_id,
'Prezzo di Vendita',

summary (lm(buy_price~house_type_id))

#i#

## Call:

## lm(formula = buy_price ~ house_type_id)
##

## Residuals:

'Prezzo e Tipo di Casa',
c('Appartamento', 'Attico','Casa'),

Max

## Min 1Q Median 3Q
## -1045116 -226672 -116672 116328 6823609
##

## Coefficients:

'Tipo di Casa',
c(2,3,4))
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# Estimate Std. Error t value Pr(>[tl)

## (Intercept) 406672 6136 66.28 <2e-16 **x
## house_type_idAttic 294719 23716  12.43  <2e-16 **x*
## house_type_idIndependent 732444 27303 26.83 <2e-16 **x*
## ——-

## Signif. codes: O 'x*kx' 0.001 '**x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 410400 on 5030 degrees of freedom
## Multiple R-squared: 0.1428, Adjusted R-squared: 0.1425
## F-statistic: 419.1 on 2 and 5030 DF, p-value: < 2.2e-16

boxplot (buy_price~energy_certificate, 'Prezzo e Certificazione Energetica',
'Certificazione Energetica', 'Prezzo di Vendita', c('Alta','Bassa'), c(2,3))
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summary (1lm(buy_price~energy_certificate))

#i#

## Call:

## Im(formula = buy_price ~ energy_certificate)
##

## Residuals:

## Min 1Q Median 3Q Max

## -516764 -247768 -127768 112232 6928236

##

## Coefficients:
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#i# Estimate Std. Error t value Pr(>|tl)

## (Intercept) 596764 13312  44.83 <2e-16 **x*
## energy_certificatelLow -173996 15021 -11.58 <2e-16 *x**
## ——-

## Signif. codes: 0 'x*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 437500 on 5031 degrees of freedom
## Multiple R-squared: 0.02598, Adjusted R-squared: 0.02579
## F-statistic: 134.2 on 1 and 5031 DF, p-value: < 2.2e-16

# Esplorazione Spaziale

## knearneigh
knear=knearneigh(train_coord, k=300, TRUE) # numero di vicint k fissato
x=train$buy_price
r=sapply(1:300,function(i){
cor (x,x[knear$nn([,i]])

b

data.frame(k=1:300,r=r) %>% # correlazione al variare di k -> correlazione 0,3 per k=75
ggplot (aes(x=k,y=r)) +
geom_line() +
geom_smooth (se=FALSE) +
xlab('k-esimo nearest neighbour') +
ylab('Correlazione') +
theme_light ()
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k_moran_I=c() # indice di Moran al wvariare di k
for (i in seq(5,100,5))1{

k_neigh=knn2nb (knearneigh(train_coord, k=i, TRUE))
k_distance=nbdists(k_neigh,train_coord, TRUE)
inv_k_distance=lapply(k_distance,function(x) (1/(x+1)))
k_weight=nb2listw(k_neigh, inv_k_distance, "W')
k_moran=moran.mc (train$buy_price,k_weight, 100, 'two.sided')
k_moran_I=c(k_moran_I,k_moran$statistic)

}

moran_JI_k=data.frame( k_moran_I,k=seq(5,100,5))

ggplot(moran_I_k,aes(x=k,y=moran)) +
geom_point() +
geom_line() +
xlab('k') +
ylab('Moran') +
theme_light ()

0.60

0.55

0.50

Moran

0.45

0.40

0.35
25 50 75

## dnearneigh

d_moran_I=c() # indice di Moran al wvariare di una distanza soglia d

for (d in seq(0.01,1,0.03)){
d_neigh=dnearneigh(train_coord,0,d, TRUE)
d_distance=nbdists(d_neigh,train_coord, TRUE)
inv_d_distance=lapply(d_distance, function(x) (1/(x+1)))
d_weight=nb2listw(d_neigh, inv_d_distance, W', TRUE)
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d_moran=moran.mc (train$buy_price,d_weight, 100, 'two.sided', TRUE)
d_moran_I=c(d_moran_I,d_moran$statistic)

}

moran_JI_d=data.frame( d_moran_I, seq(0.01,1,0.03))

ggplot(moran_I_d,aes(x=distance,y=moran)) +
geom_point () +
geom_line() +
xlab('Distanza') +
ylab('Moran') +
theme_light ()
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Distanza
k_neigh_75=knn2nb(knearneigh(train_coord, k=75, TRUE)) # k=75
k_distance_75=nbdists(k_neigh_75,train_coord, TRUE)
inv_k_distance_75=lapply(k_distance_75, function(x) (1/(x+0.001)))
k_weight_75=nb2listw(k_neigh_75, inv_k_distance_75, "W')
moran.plot(train$buy_price,k_weight_75, '"Prezzo di Vendita (Y)',

'Prezzo di Vendita con Lag Spaziale (WY)', 'Diagramma di Moran')



Prezzo di Vendita con Lag Spaziale (WY)

mor

#i#
##
#i#
##
#i#
##
#i#
##
#i#t

gea

##
#i#t
#i#
##
##
##
#i#
##
#i#
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Diagramma di Moran

4e+06

2e+06

0e+00

Prezzo di Vendita (Y)

an.mc(train$buy_price,k_weight_75, 100, 'two.sided')

Monte-Carlo simulation of Moran I
data: train$buy_price
weights: k_weight_75

number of simulations + 1: 101

statistic = 0.5608, observed rank = 101, p-value < 2.2e-16
alternative hypothesis: two.sided

ry.mc(train$buy_price,k_weight_75, 100, 'two.sided')

Monte-Carlo simulation of Geary C

data: train$buy_price
weights: k_weight_75
number of simulations + 1: 101

statistic = 0.40296, observed rank = 1, p-value = 0.0198
alternative hypothesis: two.sided
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d_neigh_75=dnearneigh(train_coord,0,0.8, TRUE) # d=0,8 km -> n.medio di vicini=75
d_distance_75=nbdists(d_neigh_75,train_coord, TRUE)
inv_d_distance_75=lapply(d_distance_75, function(x) (1/(x+0.001)))
d_weight_75=nb2listw(d_neigh_ 75, inv_d_distance_75, W', TRUE)

d_weight_75%$neighbours

## Neighbour list object:

## Number of regions: 5033

## Number of nonzero links: 391178

## Percentage nonzero weights: 1.54426
## Average number of links: 77.72263
## 5 regions with no links:

## 331 2223 2462 2648 4994

moran.mc (train$buy_price,d_weight_75, 100, 'two.sided', TRUE)
#H#t

## Monte-Carlo simulation of Moran I

##

## data: train$buy_price

## weights: d_weight_75

## number of simulations + 1: 101

##

## statistic = 0.57371, observed rank = 101, p-value < 2.2e-16
## alternative hypothesis: two.sided

geary.mc(train$buy_price,d_weight_75, 100, 'two.sided', TRUE)
#i#

## Monte-Carlo simulation of Geary C

#i#

## data: train$buy_price

## weights: d_weight_75

## number of simulations + 1: 101

##

## statistic = 0.39189, observed rank = 1, p-value = 0.0198
## alternative hypothesis: two.sided

# Variabili Spazial?t
## Distretti

train_c_district=as.data.frame(cbind(train,train_distance,train_district))
test_c_district=as.data.frame(cbind(test,test_distance,test_district))
colnames (train_c_district) [39]='district'

colnames (test_c_district) [39]='district'
train_c_district$district=as.factor(train_c_district$district)
test_c_district$district=as.factor(test_c_district$district)

## Cluster
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data_cluster=as.data.frame(cbind(datal,c(2,3,4,6)],data_coord))

set.seed(123)

fit_mm=mclustBIC(data_cluster, FALSE,G=1:25, # scelta del numero dt cluster
list (hcRandomPairs(data_cluster)))

plot(fit_mm, "Numero di cluster")

title( "Selezione del Modello")

Selezione del Modello

o
o
& ] =N T e
o /E*E'E'E E‘E’E.E “m-@° N
8 ’;‘§'ii%i‘i?if'fifiil'l=l=l'l~l=l3lilil3lil:l:l:l
-
7
O AA A BRI A K XES
- ) PN SNV o EVE
A_A—A'A ¢ EEl' & VWE
1 A = VEI # EEV
T A ® EVI ® VEV
olo A o VWI B EVV
A/ ® EEE O VVV
T T T T T T T T T T T T T 1T T T T 1T T T T .1
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Numero di cluster
fit_mm

## Bayesian Information Criterion (BIC):
#Hi#t EII VII EEI VEI EVI VVI EEE

## 1 -373297.2 -373297.2 -95024.96 -95024.96 -95024.96 -95024.96 -83257.53
## 2 -342529.6 -318249.7 -86465.47 -83368.57 -83083.37 -80824.90 -79643.90
## 3 -325272.5 -288402.6 -82936.95 NA NA NA -79540.82
## 4 -305833.8 -269470.3 -79425.45 NA NA NA -78668.82
## 5 -291205.8 -254745.1 -79297.28 NA NA NA -76435.14
## 6 -281193.8 -244373.6 -74297.52 NA NA NA -76458.41
## 7 -273679.4 -234641.9 -74183.43 NA NA NA -76004.81
## 8 -266868.5 -228380.9 -68729.72 NA NA NA -76060.03
## 9 -261078.1 -219978.7 -68698.39 NA NA NA -75800.68
## 10 -253493.0 -214875.9 -68612.95 NA NA NA -75735.09
## 11 -248557.4 -210786.7 -73650.87 NA NA NA -74761.87
## 12 -246446.7 -207652.6 -73694.25 NA NA NA -75496.37



#it
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#i#t
##
#Hit
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#it
##
#it
##
#i#t
##
#i#
#i#
#Hi#t
#i#
##
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13 -241795.
14 -240118.
15 -239106.
16 -233302.

17 -231981

18 -231754.

19 -230961

20 -230428.
21 -230467.
22 -228483.
23 -228535.
24 -228596.
25 -228643.

\Y
1 -83257
2 -75561
3 -T74657
4 -73652.
5 -T72616.
6 -72451
7 -T1825.
8 -T71488.
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0 -204527.4 -73116.09

4 -200684.9 -73108.97

4 -198895.3 -73131.53

7 -196268.3 -73713.30
.4 -194059.3 -68382.24

5 -191172.8 -69512.63
.6 -190332.9 -68492.05

8 -187604.6 -68354.56

8 -186369.7 -67557.01

1 -184105.6 -68933.08

5 -183457.2 -68881.16

7 -181747.5 -68940.76

2 -179795.9 -67155.88
EE EVE VVE
.53 -83257.53 -83257.53
.42 -76379.61 -74508.06
.52 -75186.39 NA
34 NA NA
76 NA NA
.05 NA NA
18 NA NA
00 NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA

-83257.
-77604.

-76361

-76106.
-74560.
-74633.
-73895.
-73693.
-64806.
-63614.
-24944.
-40163.
-24824.
-28376.
-11022.
-26650.
-38713.
-23899.
-24244.
-11047.
-36965.
-35203.
-20775.
-13967.
-36115.

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
EEV
53
96
.50
80
38
86
71
32
23
70
11
93
20
08
71
42
17
45
33
47
18
03
03
82
53

Top 3 models based on the BIC criterion:

EEV, 15

EEV, 20

EEV,24

-11022.71 -11047.47 -13967.82

fit=Mclust(data_cluster,

summary (fit)

##

FALSE,
list (hcRandomPairs(data_cluster)))

15

3

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

VEV
-83257.53
-74709.31
-73174.35
-72360.21
-71595.75
-71212.58
-70079.01
NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA -75376.
NA -75433.
NA -74420.
NA -74272.
.46

NA -73811

NA -73364.
NA -73421.
NA -72896.
NA -72887.
NA -72710.
NA -72305.
NA -72256.
NA -72563.

EVV

-83257.
-75130.
-73423.
-72416.
-71983.

'EEV',

## Gaussian finite mixture model fitted by EM algorithm

##
#i#t

13
75
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

87
86
88
89

86
95
63
08
02
29
01
92

LAY
53 -83257.
47 -T72873.
82 -72008.

53
15
07
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

## Mclust EEV (ellipsoidal, equal volume and shape) model with 15 components:

#i#t



## log-likelihood n df BIC ICL
#i# -18774.12 6287 335 -40478.24 -43358.07
##

## Clustering table:
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14
## 2228 108 70 46 2561 165 16 463 96 93 181 17 105 107

cl=fit$classification
cl_train=cl[data$ind_train]
cl_test=cl[data$ind_train==FALSE]

train_c_cluster=as.data.frame(cbind(train,train_distance,cl_train))
test_c_cluster=as.data.frame(cbind(test,test_distance,cl_test))
colnames(train_c_cluster) [39]='cluster'

colnames (test_c_cluster) [39]='cluster'
train_c_cluster$cluster=as.factor(train_c_cluster$cluster)
test_c_cluster$cluster=as.factor(test_c_cluster$cluster)

## LISA

data_lisa=as.data.frame(cbind(data$buy_price,data_coord))
colnames(data_lisa) [1]="buy_price'

x_lisa=data$buy_price
knear_lisa=knearneigh(data_coord, k=300, TRUE)

r_lisa=sapply(1:300,function(i){
cor(x_lisa,x_lisalknear_lisa$nn[,i]])

)

data.frame(k=1:300,r=r_lisa) %>%
ggplot(aes(x=k,y=r_lisa)) +
geom_line() +
geom_smooth(se=FALSE) +
xlab('k-esimo nearest neighbour') +
ylab('Correlazione') +
theme_light ()

15
31
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neigh_lisa=knn2nb(knearneigh(data_coord, 100, TRUE) )
k_distance_lisa=nbdists(neigh_lisa,data_coord, TRUE)
inv_k_distance_lisa=lapply(k_distance_lisa, function(x) (1/(x+1)))
k_weight_lisa=nb2listw(neigh_lisa, inv_k_distance_lisa, W)

lisa=localmoran(data_lisa$buy_price,k_weight_lisa)
lisa=attributes(lisa)$quadr([,1]
summary(lisa)

##  Low-Low High-Low Low-High High-High
## 3218 296 936 1837

lisa_data=as.data.frame(cbind(data,data_distance,lisa))
lisa_train=lisa[data$ind_train]
lisa_test=lisal[data$ind_train==FALSE]

train_c_lisa=as.data.frame(cbind(train,train_distance,lisa_train))
test_c_lisa=as.data.frame(cbind(test,test_distance,lisa_test))
colnames (train_c_lisa) [39]='lisa'

colnames (test_c_lisa) [39]='lisa'’
train_c_lisa$lisa=factor(train_c_lisa$lisa)
train_c_lisa$lisa=relevel(train_c_lisa$lisa, 'High-High')
test_c_lisa$lisa=as.factor(test_c_lisa$lisa)

300



171

## Verifica delle Migliori Variabili Spaziali

cl=makePSOCKcluster(11) # calcolo parallelo con 11 cores
registerDoParallel(cl)

control=trainControl( "ew 10, TRUE)
tune_rf=expand.grid( 10, 'variance', 10)

set.seed (123)

fit_lm_district=train(buy_price~., train_c_district, 'ImStepAIC',
log(nrow(train_c_district)), control, FALSE)

summary (fit_lm_district$finalModel)

'both'

#it

## Call:

## 1lm(formula = .outcome ~ sq_mt_built + n_bathrooms + energy_certificateLlow +
## floor + house_type_idAttic + house_type_idIndependent + is_renewal_neededTRUE +
## is_new_developmentTRUE + has_parkingTRUE + has_poolTRUE +

#i#t d_supermarket + d_hospital + d_pharmacy + d_bank + d_university +
## d_school + d_kindergarten + d_train + d_park + d_disco +

## d_cinema + d_library + d_attraction + districtl4 + districtlb +
#it districtl8 + districtl9 + district20 + district21 + district3 +
## district4 + district5 + district6 + district9, data = dat)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -1452615  -87085 -7018 68576 4443529

#it

## Coefficients:

#it Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.543e+03 1.607e+04 0.283 0.777368

## sq_mt_built 3.447e+03 6.797e+01 50.720 < 2e-16 *x*x*
## n_bathrooms 7.755e+04 5.299e+03 14.634 < 2e-16 *x*x
## energy_certificatelLow -3.737e+04 8.299e+03 -4.502 6.87e-06 *xx
## floor 5.153e+03 1.483e+03  3.476 0.000514 x*x*x
## house_type_idAttic 1.206e+05 1.251e+04 9.639 < 2e-16 ***
## house_type_idIndependent -2.391e+05 1.830e+04 -13.060 < 2e-16 *xx*
## is_renewal neededTRUE -4.416e+04 8.997e+03 -4.908 9.48e-07 **x*
## is_new_developmentTRUE 1.082e+05 9.500e+03 11.385 < 2e-16 *x*x*
## has_parkingTRUE 2.430e+04 7.554e+03  3.217 0.001305 **
## has_poolTRUE 4.967e+04 8.958e+03 5.545 3.09e-08 *x*x
## d_supermarket 6.702e+01 1.361e+01  4.924 8.73e-07 **x*
## d_hospital -2.102e+01 5.620e+00 -3.741 0.000185 x*x*x*
## d_pharmacy -1.212e+02 2.861e+01 -4.236 2.31e-05 *xx
## d_bank -7.448e+01 1.164e+01 -6.398 1.72e-10 **x*
## d_university -3.131e+01 5.384e+00 -5.816 6.41e-09 *xx
## d_school -8.720e+01 1.995e+01 -4.370 1.27e-05 **x*
## d_kindergarten 1.658e+02 1.825e+01 9.085 < 2e-16 **x
## d_train -2.416e+01 3.274e+00 -7.380 1.84e-13 x*x*x*
## d_park 1.867e+02 3.094e+01 6.036 1.70e-09 *x*x*
## d_disco -2.214e+01 4.498e+00 -4.921 8.87e-07 **x*
## d_cinema -1.508e+01 4.628e+00 -3.258 0.001129 x*x*
## d_library 5.620e+01 7.171e+00 7.836 5.63e-15 *x*x*
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## d_attraction -2.983e+01 4.543e+00 -6.565 5.72e-11 **x*
## districtil4d 5.847e+04 1.557e+04  3.755 0.000175 x**x*
## districtlb 2.033e+05 1.901e+04 10.694 < 2e-16 *x*x*
## districti8 -8.149e+04 1.913e+04 -4.260 2.09e-05 *x*x*
## districtl9 1.090e+05 2.685e+04  4.062 4.94e-05 **x*
## district20 9.893e+04 2.457e+04  4.026 5.76e-05 **x*
## district21 1.090e+05 2.400e+04  4.541 5.72e-06 **x*
## district3 -9.317e+04 1.210e+04 -7.700 1.63e-14 *x*x
## districtéd 5.428e+04 1.570e+04  3.458 0.000548 x*x*x
## districtb 1.297e+05 1.315e+04  9.862 < 2e-16 ***
## district6 1.038e+05 1.407e+04  7.377 1.88e-13 **x*
## district9 1.272e+05 1.609e+04  7.908 3.21e-15 **x*
## ——-

## Signif. codes: 0 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 206100 on 4998 degrees of freedom
## Multiple R-squared: 0.7852, Adjusted R-squared: 0.7837
## F-statistic: 537.3 on 34 and 4998 DF, p-value: < 2.2e-16

fit_1m_district$results[which.min(fit_1m_district$results$RMSE),]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
## 1 none 206897.7 0.7863771 118508.8 38455.04 0.03388563 7730.648
fit_rf_district=train(buy_price~., train_c_district, 'ranger',

"impurity', 150, tune_rf, control)

fit_rf_district$results[which.min(fit_rf_district$results$RMSE),]

## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
# 1 10 variance 10 171236.6 0.8613662 76976.59 56037.58 0.06083446
## MAESD

## 1 6577.168

set.seed(123)
fit_1lm_cluster=train(buy_price-~., train_c_cluster, 'ImStepAIC', '"both',

log(nrow(train_c_cluster)), control, FALSE)
summary (fit_lm_cluster$finalModel)

#it

## Call:

## Im(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +

#i# energy_certificatelow + floor + house_type_idAttic + house_type_idIndependent +
## is_renewal_neededTRUE + is_new_developmentTRUE + has_parkingTRUE +
#t has_poolTRUE + d_supermarket + d_hospital + d_bank + d_university +
## d_school + d_kindergarten + d_train + d_bus + d_park + d_stadium +
## d_cinema + d_library + d_attraction + cluster4 + cluster5 +

#it cluster9 + clusterll + cluster13 + clusterl4, data = dat)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -1521772 -82025 -8526 67599 4493465

#i#t



## Coefficients:

#i# Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.561e+04 1.515e+04 1.691 0.090907 .
## sq_mt_built 3.442e+03 7.468e+01 46.092 < 2e-16 *xx*
## n_bathrooms 1.017e+05 6.097e+03 16.687 < 2e-16 *x*
## n_rooms 1.405e+04 3.382e+03  4.155 3.30e-05 **x
## energy_certificatelLow -2.731e+04 8.245e+03 -3.312 0.000933 *xx*
## floor 7.184e+03 1.480e+03 4.854 1.25e-06 *xx*
## house_type_idAttic 1.115e+05 1.252e+04 8.908 < 2e-16 *x*x
## house_type_idIndependent -2.331e+05 1.933e+04 -12.059 < 2e-16 **x*
## is_renewal_neededTRUE -4.477e+04 9.121e+03 -4.909 9.47e-07 x***
## is_new_developmentTRUE 1.440e+05 9.487e+03 15.181 < 2e-16 *x*x*
## has_parkingTRUE 3.257e+04 7.537e+03  4.321 1.58e-05 **x*
## has_poolTRUE 4.932e+04 8.887e+03 5.550 3.00e-08 *xx*
## d_supermarket 4.636e+01 1.244e+01  3.727 0.000196 **x*
## d_hospital -4.294e+01 4.904e+00 -8.756 < 2e-16 ***
## d_bank -8.578e+01 1.116e+01 -7.692 1.73e-14 *x**
## d_university -3.188e+01 4.041e+00 -7.888 3.74e-15 *xx
## d_school -6.698e+01 1.711e+01 -3.914 9.20e-05 *x**
## d_kindergarten 1.815e+02 1.741e+01 10.425 < 2e-16 ***
## d_train -2.752e+01 2.976e+00 -9.248 < 2e-16 ***
## d_bus -8.913e+00 2.591e+00 -3.440 0.000586 x*x**
## d_park 2.549e+02 2.936e+01 8.685 < 2e-16 *xx*
## d_stadium -2.408e+01 2.349e+00 -10.254 < 2e-16 *x**
## d_cinema -2.663e+01 4.135e+00 -6.442 1.29e-10 *x**
## d_library 8.053e+01 6.685e+00 12.046 < 2e-16 **x*
## d_attraction -1.846e+01 2.852e+00 -6.475 1.04e-10 *x**
## cluster4 -3.440e+05 4.194e+04 -8.201 2.99e-16 ***
## clusterb -1.031e+05 7.285e+03 -14.147 < 2e-16 ***
## cluster9 -2.407e+05 3.189e+04 -7.548 5.23e-14 *xx
## clusteril -6.531e+04 2.238e+04 -2.918 0.003543 *x*
## clusterl3 -2.831e+05 2.509e+04 -11.284 < 2e-16 ***
## clusterld -2.423e+05 2.435e+04 -9.951 < 2e-16 ***
## ——-

## Signif. codes: O 'sx*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 205200 on 5002 degrees of freedom

##
#i#

Multiple R-squared:
F-statistic:

0.7869, Adjusted R-squared:

0.7856
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615.8 on 30 and 5002 DF, p-value: < 2.2e-16

fit_1m_cluster$results[which.min(fit_lm_cluster$results$RMSE),]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

## 1 none 207321.7 0.786619 118234.4 38814.93 0.03386087 6779.463
fit_rf_cluster=train(buy_price-~., train_c_cluster, 'ranger',
"impurity', 150, tune_rf, control)

fit_rf_cluster$results[which.min(fit_rf_cluster$results$RMSE),]

## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
# 1 10 variance 10 174633.4 0.8542185 78709.42 53502.09 0.05870588
#it MAESD
## 1 6177.151
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set.seed(123)

fit_1lm_lisa=train(buy_price-~., train_c_lisa, 'ImStepAIC', 'both',
log(nrow(train_c_lisa)), control, FALSE)

summary(fit_lm_lisa$finalModel)

#i#t

## Call:

## 1lm(formula = .outcome ~ sq_mt_built + n_bathrooms + energy_certificateLlow +
## floor + house_type_idAttic + house_type_idIndependent + is_renewal_neededTRUE +
#Hit is_new_developmentTRUE + has_poolTRUE + has_individual_heatingTRUE +
##t d_supermarket + d_pharmacy + d_bank + d_university + d_school +
## d_kindergarten + d_train + d_park + d_stadium + d_disco +

## d_cinema + d_library + d_attraction + "lisalow-Low™ + “lisaHigh-Low™ +
#i#t “lisalow-High™, data = dat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1353832 -81024 -5317 66483 4643807

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1.432e+05 1.802e+04  7.949 2.31e-15 ***
## sq_mt_built 3.308e+03 7.011e+01 47.181 < 2e-16 **x*
## n_bathrooms 6.751e+04 5.390e+03 12.526 < 2e-16 **x*
## energy_certificatelLow -3.473e+04 8.295e+03 -4.187 2.87e-05 ***
## floor 6.123e+03 1.501e+03  4.081 4.56e-05 **x*
## house_type_idAttic 1.176e+05 1.261e+04 9.332 < 2e-16 **x
## house_type_idIndependent -2.340e+05 1.878e+04 -12.458 < 2e-16 **x*
## is_renewal neededTRUE -3.962e+04 9.070e+03 -4.369 1.27e-05 **x*
## is_new_developmentTRUE 1.024e+05 9.522e+03 10.751 < 2e-16 *x*
## has_poolTRUE 3.648e+04 8.520e+03  4.282 1.89e-05 **x*
## has_individual_heatingTRUE 3.142e+04 8.170e+03  3.846 0.000121 *x*x*
## d_supermarket 4.995e+01 1.295e+01 3.857 0.000116 **x*
## d_pharmacy -9.124e+01 2.815e+01 -3.241 0.001200 **
## d_bank -6.388e+01 1.168e+01 -5.467 4.80e-08 **x*
## d_university -2.190e+01 3.937e+00 -5.564 2.78e-08 *xx
## d_school -8.154e+01 1.756e+01 -4.645 3.49e-06 **x*
## d_kindergarten 1.597e+02 1.796e+01  8.887 < 2e-16 ***
## d_train -1.382e+01 2.976e+00 -4.643 3.52e-06 **x*
## d_park 2.279e+02 2.996e+01 7.607 3.33e-14 **x
## d_stadium -1.714e+01 2.218e+00 -7.727 1.32e-14 **x*
## d_disco -1.298e+01 3.482e+00 -3.728 0.000195 *x*x*
## d_cinema -1.912e+01 4.109e+00 -4.653 3.36e-06 **x*
## d_library 3.709e+01 7.612e+00 4.872 1.14e-06 **x*
## d_attraction -1.360e+01 3.370e+00 -4.036 5.53e-05 **x*
## “lisalow-Low" -1.797e+05 1.059e+04 -16.960 < 2e-16 **x*
## “lisaHigh-Low" -1.673e+05 1.503e+04 -11.128 < 2e-16 **x*
## “lisalow-High~ -1.281e+05 1.117e+04 -11.466 < 2e-16 **x*
## ———

## Signif. codes: O 's*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#i#

## Residual standard error: 207000 on 5006 degrees of freedom
## Multiple R-squared: 0.7831, Adjusted R-squared: 0.782
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## F-statistic: 695.1 on 26 and 5006 DF, p-value: < 2.2e-16

fit_1m_lisa$results[which.min(fit_1m_lisa$results$RMSE), ]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
##t 1 none 207425.3 0.7851833 115640.2 41250.98 0.03614779 8064.372
fit_rf_lisa=train(buy_price-~., train_c_lisa, 'ranger',

"impurity', 150, tune_rf, control)

fit_rf_lisa$results[which.min(fit_rf_ lisa$results$RMSE),]

## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
# 1 10 variance 10 165348.7 0.8675168 71593.76 53492.58 0.05859579
## MAESD

## 1 6999.482

#urite_zlsz(lisa_data, 'data_reg.zlsz')
#write_zlsz(train_c_lisa, 'train_reg.zlsz')
#uwrite_zlsc(test_c_lisa, 'test_reg.zlsz')
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Regressione

library(readxl)
library(car)
library(Metrics)
library(nortest)
library(doParallel)
library(ggpubr)
library(sf)
library(spdep)
library(caret)
library(spatialreg)

train=as.data.frame(read_excel('train.xlsx'))
test=as.data.frame(read_excel('test.xlsx'))
train_reg=as.data.frame(read_excel('train_reg.xlsx'))
test_reg=as.data.frame(read_excel('test_reg.xlsx'))
train_coord=as.data.frame(read_excel('train_coord.xlsx'))
test_coord=as.data.frame(read_excel('test coord.xlsx'))

X_train=train_regl[,-1]
y_train=train_regl[,1]
x_test=test_reg[,-1]
y_test=test_reg[,1]

set.seed(123)

control=trainControl( ‘cev', 10, TRUE)
cl=makePSOCKcluster (11)

registerDoParallel(cl)

# Modello Lineare

fit_lm=train(buy_price~., train, 'ImStepAIC', 'both',
log(nrow(train)), control, FALSE)
fit_Im$results[which.min(fit_lm$results$RMSE), ]

##  parameter RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
## 1 none 243064.3 0.703151 144217.7 37284.54 0.03728231 9711.555

summary (fit_lm$finalModel)

#i#

## Call:

## lm(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +

#i#t house_type_idAttic + house_type_idIndependent + is_exteriorTRUE +
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#i# is_new_developmentTRUE + has_acTRUE + has_1iftTRUE + has_gardenTRUE +
#i#t has_individual_heatingTRUE, data = dat)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -1628677 -107980 -5402 78575 4695266

#it

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -80902.4 17585.5 -4.601 4.32e-06 **x*
## sq_mt_built 3850.8 82.7 46.563 < 2e-16 **x*
## n_bathrooms 102405.5 6396.9 16.009 < 2e-16 **x
## n_rooms -17202.8 3851.8 -4.466 8.14e-06 **x*
## house_type_idAttic 137105.5 14306.4 9.584 < 2e-16 **x*
## house_type_idIndependent -367574.4 20714.4 -17.745 < 2e-16 **x*
## is_exteriorTRUE -64266.5 12310.3 -5.221 1.86e-07 **x*
## is_new_developmentTRUE 110493.8 10233.0 10.798 < 2e-16 **x*
## has_acTRUE 30691.5 7552.2  4.064 4.90e-05 *xx
## has_liftTRUE 51886.3 9400.3 5.520 3.57e-08 *x*x*
## has_gardenTRUE -50734.1 8114.9 -6.252 4.39e-10 ***
## has_individual_heatingTRUE -45219.0 9242.6 -4.892 1.03e-06 **x*
#it —-—-

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#it

## Residual standard error: 242400 on 5021 degrees of freedom
## Multiple R-squared: 0.7015, Adjusted R-squared: 0.7008
## F-statistic: 1073 on 11 and 5021 DF, p-value: < 2.2e-16

#confint (fit_lm$finalModel)

set.seed(123)

fit_lm_complete=train(buy_price~., train_reg, 'ImStepAIC', 'both',
log(nrow(train_reg)), control, FALSE)

#fit_lm_complete$results[which.min(fit_lm_complete$resul ts$RMSE), ]

#summary (fit_lm_complete$finalModel)

#confint (fit_lm_complete$finalModel)

par( c(2,3))
plot(fit_lm_complete$finalModel, 1:6) # diagnostiche
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o Residuals vs Fitted Normal Q-Q - Scale-Location
2 < 94 © paistzre)
) X46840 5 X46840 >
0 - k=] — g <
r—"é © 3 o
© o
3 % 3 5
n N N N
O kel °©
@ = 3
=) © —
8 = g
+ I o o
& T T T T 0 =
' 0e+00 2e+06 0e+00 2e+06
Fitted values Theoretical Quantiles Fitted values
. . ! 1 *
- CookK's distance _ Residuals vs Leverage COoK's dist vs Leverage hi/ (1
c X4684 © 2904453 10
o B % o | OX4684 o 4 9 ,
Q = N Q ’ ’ ’
c < 7] c < | !, ’
S S o 8 o e, L’
i) kel R A ,
© — 8 © I’I’ // 7
n o~ N n o~ ,
S o 7 X1913  X3648 g $ o ll'lémésgs 5
o | 3 s} e
° o5 III b L 8 ° o |4
) N al = - =Q—-——g= R
S T T T T T n S e |'00
0 1000 3000 5000 0.00 0.05 0.10 0.15 0 0.05 0.1 0.15
Obs. number Leverage Leverage hj
par( c(1,1))

set.seed(123)
sub_res=sample(fit_1lm_complete$finalModel$residuals, 100)
hist(sub_res, 'Istogramma dei Residui', 'Residui’, 'Frequenza', '"#F8766D"')
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Istogramma dei Residui
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shapiro.test(sub_res)

#it

## Shapiro-Wilk normality test

#it

## data: sub_res

## W = 0.84076, p-value = 5.482e-09

lillie.test(fit_lm_complete$finalModel$residuals)

##

## Lilliefors (Kolmogorov-Smirnov) normality test
##

## data: fit_lm_complete$finalModel$residuals

## D = 0.15641, p-value < 2.2e-16

data_num_log=train[,sapply(train,is.numeric)]
data_num_log=as.data.frame(cbind(data_num_log[,-1],log(train$buy_price)))
pairs(~.,data=data_num_log,main="Diagrammi Multipli") # scatterplots con log(y)
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Diagrammi Multipli
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## Modello Log-Lineare

set.seed(123)

600

10

14

11

fit_loglm=train(log(buy_price)~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2),
train, 'lmStepAIC', 'both',k=log(nrow(train)),
control, FALSE)
fit_loglm$results[which.min(fit_loglm$results$RMSE),]

##  parameter RMSE Rsquared MAE RMSESD RsquaredSD MAESD
# 1 none 0.3604108 0.7441636 0.2889728 0.01181533 0.01861354 0.009412958

summary (fit_loglm$finalModel)

#i#t

## Call:

## Im(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +

#i# floor + house_type_idAttic + house_type_idIndependent + is_exteriorTRUE +
## is_renewal_neededTRUE + is_new_developmentTRUE + has_acTRUE +

## has_fitted_wardrobesTRUE + has_liftTRUE + has_gardenTRUE +

## has_individual_heatingTRUE + “I(sq_mt_built™2) " + “I(n_rooms™2) +
#it “I(n_bathrooms~2)", data = dat)

#it

## Residuals:

#it Min 1Q Median 3Q Max

## -1.79431 -0.24686 -0.00811 0.24539 1.45678
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#it

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.157e+01 2.986e-02 387.634 < 2e-16 ***
## sq_mt_built 9.189e-03 2.550e-04 36.041 < 2e-16 *x*x
## n_bathrooms 1.786e-01 1.952e-02 9.1563 < 2e-16 **x*
## n_rooms -5.679e-02 8.962e-03 -6.336 2.56e-10 **x*
## floor 1.133e-02 2.625e-03 4.314 1.63e-05 ***
## house_type_idAttic 1.459e-01 2.199e-02 6.634 3.62e-11 **x
## house_type_idIndependent -4.501e-01 3.092e-02 -14.559 < 2e-16 **x*
## is_exteriorTRUE -1.500e-01 1.834e-02 -8.181 3.55e-16 **x*
## is_renewal_neededTRUE -4.914e-02 1.646e-02 -2.985 0.002853 *x*
## is_new_developmentTRUE 2.100e-01 1.695e-02 12.388 < 2e-16 ***
## has_acTRUE 8.583e-02 1.201e-02 7.144 1.03e-12 *x*x*
## has_fitted_wardrobesTRUE 4.433e-02 1.275e-02  3.476 0.000513 *x*x
## has_liftTRUE 3.477e-01 1.448e-02 24.005 < 2e-16 *x*x
## has_gardenTRUE -5.983e-02 1.217e-02 -4.916 9.09e-07 *x*x*
## has_individual_heatingTRUE -1.648e-01 1.399e-02 -11.780 < 2e-16 ***
## “I(sq_mt_built™2)" -7.359e-06 3.305e-07 -22.269 < 2e-16 **x*
## “I(n_rooms™2)" 3.518e-03 7.763e-04 4.531 6.00e-06 **x*
## ~I(n_bathrooms~™2)" -8.163e-03 2.574e-03 -3.172 0.001525 *x*
## ———

## Signif. codes: O '*x*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#i#

## Residual standard error: 0.358 on 5015 degrees of freedom
## Multiple R-squared: 0.7478, Adjusted R-squared: 0.747
## F-statistic: 874.7 on 17 and 5015 DF, p-value: < 2.2e-16

set.seed(123)
fit_loglm_complete=train(log(buy_price)~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2),
train_reg, 'ImStepAIC', 'both',k=log(nrow(train_reg)),
control, FALSE)
fit_loglm_complete$results[which.min(fit_loglm_complete$results$RMSE) , ]

##  parameter RMSE Rsquared MAE RMSESD RsquaredSD MAESD
## 1 none 0.2276164 0.8978986 0.1745979 0.01763031 0.0134047 0.005423899

summary (fit_loglm_complete$finalModel)

#i#t

## Call:

## Im(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +

## floor + house_type_idAttic + house_type_idIndependent + is_renewal_neededTRUE +
## is_new_developmentTRUE + has_acTRUE + has_liftTRUE + has_balconyTRUE +
#i# has_parkingTRUE + has_poolTRUE + has_storage_roomTRUE + d_hospital +
## d_bank + d_university + d_kindergarten + d_train + d_airport +

## d_park + d_stadium + d_disco + d_cinema + d_library + d_historic +

## d_attraction + “lisaHigh-Low™ + “lisalow-High® + “lisalow-Low™ +

## "I(sq_mt_built™2)  + “I(n_bathrooms~2), data = dat)

#it

## Residuals:

#i# Min 1Q Median 3Q Max

## -1.02986 -0.14021 0.00264 0.14243 1.02426
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#it

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1.215e+01 2.738e-02 443.756 < 2e-16 **x*
## sq_mt_built 5.173e-03 1.662e-04 31.122 < 2e-16 *x*x*
## n_bathrooms 1.018e-01 1.227e-02 8.301 < 2e-16 **x
## n_rooms 2.939e-02 3.866e-03 7.601 3.50e-14 *x*x
## floor 1.469e-02 1.629e-03 9.019 < 2e-16 *x*x
## house_type_idAttic 1.137e-01 1.380e-02 8.239 < 2e-16 *x*x
## house_type_idIndependent -1.870e-01 1.982e-02 -9.436 < 2e-16 **x*
## is_renewal_neededTRUE -8.969e-02 1.013e-02 -8.855 < 2e-16 *x*
## is_new_developmentTRUE 1.951e-01 1.032e-02 18.898 < 2e-16 *x*
## has_acTRUE 5.925e-02 7.266e-03 8.153 4.43e-16 *x*x
## has_liftTRUE 2.292e-01 9.064e-03 25.286 < 2e-16 *xx*x*
## has_balconyTRUE 2.089e-02 6.719e-03 3.110 0.001884 *x*
## has_parkingTRUE 5.687e-02 8.684e-03 6.549 6.36e-11 *xx*x
## has_poolTRUE 9.056e-02 9.759e-03 9.280 < 2e-16 *x*x*
## has_storage_roomTRUE 2.628e-02 7.626e-03 3.447 0.000572 *x*x
## d_hospital -4.841e-05 5.919e-06 -8.179 3.60e-16 **x*
## d_bank -9.585e-05 1.199e-05 -7.991 1.65e-15 *x*x*
## d_university -4.989e-05 4.341e-06 -11.493 < 2e-16 **x*
## d_kindergarten 1.060e-04 1.770e-05 5.987 2.29e-09 **x
## d_train -3.125e-05 4.158e-06 -7.515 6.70e-14 x*x*x*
## d_airport 1.184e-05 1.817e-06 6.516 7.93e-11 ***
## d_park 2.252e-04 3.225e-05 6.985 3.22e-12 *xx*
## d_stadium -2.872e-05 2.540e-06 -11.306 < 2e-16 *x*x*
## d_disco -1.623e-05 3.787e-06 -4.285 1.86e-05 *x*x*
## d_cinema -2.348e-05 4.467e-06 -5.257 1.52e-07 ***
## d_library 8.161e-05 8.134e-06 10.033 < 2e-16 *x*x*
## d_historic 1.017e-05 2.857e-06 3.560 0.000374 *xx*
## d_attraction -4.963e-05 4.629e-06 -10.723 < 2e-16 *x*x*
## “lisaHigh-Low" -1.392e-01 1.657e-02 -8.404 < 2e-16 *x**
## “lisalow-High" -2.845e-01 1.262e-02 -22.536 < 2e-16 *x*x*
## “lisalow-Low" -4.974e-01 1.288e-02 -38.622 < 2e-16 *x*x
## "I(sq_mt_built™2)" -3.663e-06 2.074e-07 -17.664 < 2e-16 *x*x*
## “I(n_bathrooms~™2)" -6.520e-03 1.617e-03 -4.033 5.58e-05 *x*x*
##t ——-—

## Signif. codes: O '*x*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#it

## Residual standard error: 0.2216 on 5000 degrees of freedom
## Multiple R-squared: 0.9037, Adjusted R-squared: 0.9031
## F-statistic: 1466 on 32 and 5000 DF, p-value: < 2.2e-16

cv_log_error=function(data,k, 123){ # funzione per cross-validation con log(y)

set.seed(seed)

yourdata=data[sample (nrow(data)),]

fold=cut(seq(l,nrow(yourdata)), k, FALSE)

rmse_val=NULL

mae_val=NULL

r2_val=NULL

for(i in 1:k){
test_index=which(fold==i, TRUE)
test_data=yourdata[test_index,]
train_data=yourdata[-test_index,]
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null_m=1m(log(buy_price)~1, train_data)

all _m=1m(log(buy_price)~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2), train_data)
model=step(null_m, 'both', formula(all_m),k=log(nrow(train_data)), FALSE)
pred=predict (model, test_datal,-1])

pred_exp=exp (pred)
rmse_val[il=rmse(test_datal,1],pred_exp)
r2_val[i]l=cor(test_datal,1],pred_exp)~2
mae_val[il=mae(test_datal,1],pred_exp)

}

rmse_mean=mean (rmse_val)

r2_mean=mean (r2_val)

mae_mean=mean(mae_val)

cv_error=as.data.frame(cbind (rmse_mean,r2_mean,mae_mean))

colnames(cv_error)=c('RMSE', 'Rsquared', 'MAE')

return(cv_error)

cv_log_error(train,10)

## RMSE Rsquared MAE
## 1 248836.9 0.6917868 135127.1

cv_log_error(train_reg,10)

#i#t RMSE Rsquared MAE
## 1 189766.5 0.8143128 87295.54

par( c(2,3))
plot(fit_loglm_complete$finalModel, 1:6)
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par( c(1,1))
set.seed(123)
sub_res_log=sample(fit_loglm_complete$finalModel$residuals, 100)
hist(sub_res_log, 'Istogramma sui Residui con log(y)', 'Residui’, 'Frequenza'

>

'"#F8766D"'
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shapiro.test(sub_res_log)

#it

## Shapiro-Wilk normality test
#i#t

## data: sub_res_log

## W = 0.97318, p-value = 0.03891

lillie.test(fit_loglm_complete$finalModel$residuals)

##

## Lilliefors (Kolmogorov-Smirnov) normality test
##

## data: fit_loglm_complete$finalModel$residuals
## D = 0.015261, p-value = 0.009488

vif(fit_lm$finalModel)

#it sq_mt_built n_bathrooms
## 4.085910 3.541150
## n_rooms house_type_idAttic
## 2.109430 1.046565
##  house_type_idIndependent is_exteriorTRUE

## 1.655409 1.073466
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#i# is_new_developmentTRUE has_acTRUE
#i#t 1.359739 1.219848
## has_1iftTRUE has_gardenTRUE
#i 1.281344 1.193599
## has_individual_heatingTRUE
#it 1.206934

vif(fit_loglm$finalModel)

## sq_mt_built n_bathrooms
## 17.805482 15.114543
## n_rooms floor
## 5.236344 1.159193
#i# house_type_idAttic  house_type_idIndependent
## 1.133570 1.690916
#it is_exteriorTRUE is_renewal_neededTRUE
## 1.092404 1.211158
#i#t is_new_developmentTRUE has_acTRUE
#it 1.711310 1.415265
## has_fitted_wardrobesTRUE has_1iftTRUE
#i#t 1.526414 1.394575
#t has_gardenTRUE has_individual_heatingTRUE
#it 1.230654 1.267923
## “I(sq_mt_built~2)" “I(n_rooms™2)"
#it 10.495963 3.293684
## “I(n_bathrooms~2)"

#it 10.773136

vif(fit_lm_complete$finalModel)

## sq_mt_built n_bathrooms
#i# 4.029489 3.449794
## energy_certificatelLow floor
## 1.362870 1.133360
#i# house_type_idAttic  house_type_idIndependent
## 1.115098 1.867547
## is_renewal_neededTRUE is_new_developmentTRUE
## 1.099973 1.615697
#it has_poolTRUE has_individual_heatingTRUE
## 1.797343 1.294026
#i# d_supermarket d_pharmacy
#it 1.742188 2.459565
## d_bank d_university
## 3.289510 2.582222
#t d_school d_kindergarten
#i#t 2.224209 1.537405
## d_train d_park
#it 1.148420 1.192924
## d_stadium d_disco
#it 1.625153 3.757847
## d_cinema d_library
#it 2.217061 4.256526

#i#t d_attraction “lisaHigh-Low"



## 2.908031 1.210703
#i# “lisalow-High~ “lisalow-Low"
## 1.871342 3.296066

vif(fit_loglm_complete$finalModel)

## sq_mt_built n_bathrooms n_rooms
## 19.761768 15.596109 2.544391
#i# floor house_type_idAttic house_type_idIndependent
## 1.164620 1.165132 1.814742
## is_renewal_neededTRUE is_new_developmentTRUE has_acTRUE
## 1.196736 1.656428 1.351864
#i# has_liftTRUE has_balconyTRUE has_parkingTRUE
#i#t 1.426179 1.147791 1.835050
##t has_poolTRUE has_storage_roomTRUE d_hospital
#it 2.057447 1.415630 2.599854
## d_bank d_university d_kindergarten
#it 3.024621 2.738599 1.302233
## d_train d_airport d_park
#it 1.955122 1.741197 1.205903
## d_stadium d_disco d_cinema
## 1.859295 3.878708 2.285380
## d_library d_historic d_attraction
#it 4.240352 3.609735 4.785577
## “lisaHigh-Low" “lisalow-High" “lisalow-Low"
#it 1.282622 2.085574 4.249629
#i# "I(sq_mt_built~2)" “I(n_bathrooms~2)"

#it 10.789318 11.096210

c(AIC(fit_1m$finalModel) ,BIC(fit_lm$finalModel))

## [1] 139100.1 139184.9

c(AIC(fit_1m_complete$finalModel) ,BIC(fit_lm_complete$finalModel))

## [1] 137522.4 137705.0

c(AIC(fit_loglm$finalModel)+2*sum(log(train_reg$buy_price)),
BIC(fit_loglm$finalModel)+2*sum(log(train_reg$buy_price)))

## [1] 132384.3 132508.2

c(AIC(fit_loglm_complete$finalModel)+2xsum(log(train_reg$buy_price)),
BIC(fit_loglm_complete$finalModel)+2*sum(log(train_reg$buy_price)))

## [1] 127569.0 127790.8

## Errore di Previsione

### modello lineare
obs_lm=predict(fit_lm_complete, X_train)
c(rmse(y_train,obs_lm) ,mae(y_train,obs_1lm))

# train error
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## [1] 206398.7 113972.3

pred_lm=predict(fit_lm_complete, X_test) # test error
c(rmse(y_test,pred_1m) ,mae(y_test,pred_1m))

## [1] 183844.4 110095.6
### modello log-lineare
obs_loglm=predict(fit_loglm_complete, x_train)

obs_loglm=exp (obs_loglm)
c(rmse(y_train,obs_loglm) ,mae(y_train,obs_loglm))

## [1] 178699.36 85774.89
pred_loglm=predict(fit_loglm_complete, X_test)

pred_loglm=exp(pred_loglm)
c(rmse(y_test,pred_loglm) ,mae(y_test,pred_loglm))

## [1] 166736.23 85520.44

# Modelli Lineari Generalizzati (GLM)

set.seed(123)
fit_glm=train(buy_price~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2), ## Normale -> log

train_reg, 'glmStepAIC', gaussian( 'log'),
'both',k=log(nrow(train_reg)), control, FALSE)

summary (fit_glm)
##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1340057 -51590 -811 53685 2705265
#i#
## Coefficients:
#it Estimate Std. Error t value Pr(>|tl)
## (Intercept) 1.254e+01 4.199e-02 298.636 < 2e-16 ***
## sq_mt_built 4.944e-03 1.212e-04 40.809 < 2e-16 *x*x
## n_bathrooms 1.031e-01 1.059e-02 9.732 < 2e-16 **x
## n_rooms 2.303e-02 1.895e-03 12.148 < 2e-16 *x*x
## energy_certificatelow -7.987e-02 9.446e-03 -8.456 < 2e-16 **x*
## floor 6.523e-03 1.794e-03  3.636 0.000279 **x*
## house_type_idAttic 1.621e-01 1.235e-02 13.130 < 2e-16 ***
## house_type_idIndependent -2.343e-01 1.577e-02 -14.860 < 2e-16 **x*
## is_exteriorTRUE 7.792e-02 2.150e-02  3.625 0.000292 **x*
## is_renewal neededTRUE -1.085e-01 1.260e-02 -8.613 < 2e-16 **x*
## is_new_developmentTRUE 1.777e-01 1.281e-02 13.878 < 2e-16 *x*
## has_acTRUE 4.447e-02 9.400e-03 4.731 2.29e-06 *x*x
## has_fitted_wardrobesTRUE -6.550e-02 9.850e-03 -6.649 3.26e-11 **x*



## has_liftTRUE 1.783e-01 2.138e-02 8.338 < 2e-16
## has_parkingTRUE 7.057e-02 9.781e-03 7.215 6.19e-13
## has_poolTRUE 6.125e-02 1.059e-02 5.785 7.69e-09
## has_individual_heatingTRUE ©5.151e-02 9.970e-03 5.166 2.48e-07
## d_supermarket 8.205e-05 2.173e-05 3.777 0.000161
## d_hospital -4.775e-05 8.929e-06 -5.348 9.28e-08
## d_bank -1.106e-04 1.937e-05 -5.708 1.21e-08
## d_university -5.915e-05 7.469e-06 -7.919 2.93e-15
## d_school -8.802e-05 2.261e-05 -3.893 0.000100
## d_kindergarten 2.945e-04 1.796e-05 16.399 < 2e-16
## d_train -6.005e-05 6.057e-06 -9.915 < 2e-16
## d_airport -9.792e-06 2.315e-06 -4.231 2.37e-05
## d_gym -4.118e-05 1.227e-05 -3.355 0.000799
## d_park 4.225e-04 3.125e-05 13.522 < 2e-16
## d_stadium -4.227e-05 3.803e-06 -11.114 < 2e-16
## d_disco -4.388e-05 4.846e-06 -9.055 < 2e-16
## d_cinema -6.600e-05 5.810e-06 -11.360 < 2e-16
## d_library 1.103e-04 1.040e-05 10.604 < 2e-16
## d_historic 3.366e-05 4.221e-06 7.974 1.89e-15
## d_attraction -6.619e-05 6.499e-06 -10.185 < 2e-16
## “lisaHigh-Low" -1.862e-01 1.895e-02 -9.825 < 2e-16
## “lisalow-High~ -3.240e-01 2.031e-02 -15.953 < 2e-16
## “lisaLow-Low" -4.949e-01 1.972e-02 -25.093 < 2e-16
## “I(sq_mt_built™2)" -2.835e-06 1.190e-07 -23.817 < 2e-16
## ~I(n_bathrooms™2)" -6.469e-03 9.447e-04 -6.848 8.39%e-12
## ——-—

## Signif. codes: O 's*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 24064538248)
#i#

#i#t Null deviance: 9.885le+14 on 5032 degrees of freedom

## Residual deviance: 1.2020e+14 on 4995 degrees of freedom

## AIC: 134632

#i#

## Number of Fisher Scoring iterations: 7

fit_glm

## Generalized Linear Model with Stepwise Feature Selection
##

## 5033 samples

## 38 predictor

##

## No pre-processing

## Resampling: Cross-Validated (10 fold)

## Summary of sample sizes: 4530, 4529, 4530, 4530, 4529, 4531,
## Resampling results:

##

##  RMSE Rsquared MAE

##  1656623.1 0.8589126 90192.79

set.seed(123)
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fit_glm_gamma=train(buy_price~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2),

## Gamma -> inverse
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train_reg, 'glmStepAIC', Gamma (
'both',k=log(nrow(train_reg)),
fit_glm_gamma

## Generalized Linear Model with Stepwise Feature Selection
#i#

## 5033 samples

## 38 predictor

##

## No pre-processing

## Resampling: Cross-Validated (10 fold)

## Summary of sample sizes: 4530, 4529, 4530, 4530, 4529, 4531,
## Resampling results:

#i#

##  RMSE Rsquared MAE

##  188328.3 0.8211155 88588.41

summary (fit_glm_gamma)

#it

## Call:

## NULL

#it

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.88750 -0.15972 -0.01767 0.12265 1.05003

#it

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1.218e+01 2.779e-02 438.195 < 2e-16 **x*
## sq_mt_built 5.404e-03 .679e-04 32.183 < 2e-16 *x*x
## n_bathrooms 9.249e-02 .246e-02 7.420 1.37e-13 *x*x*
## n_rooms 2.659e-02 .917e-03 6.789 1.26e-11 *x*x
## floor 1.463e-02 .653e-03 8.849 < 2e-16 *xxx*
## house_type_idAttic 1.208e-01 .384e-02 8.733 < 2e-16 *xx*
## house_type_idIndependent -1.557e-01 .015e-02 -7.729 1.31e-14 *x**

## is_renewal neededTRUE -8.565e-02 .029e-02 -8.320 < 2e-16 *x*x

## is_new_developmentTRUE 1.905e-01 .048e-02 18.168 < 2e-16 **x
## has_acTRUE 5.792e-02 .383e-03 7.846 5.22e-15 **x
## has_liftTRUE 2.245e-01 .206e-03 24.382 < 2e-16 **x*
## has_parkingTRUE 5.682e-02 .825e-03  6.438 1.32e-10 *x**
## has_poolTRUE 8.746e-02 .914e-03 8.822 < 2e-16 **x*
## has_storage_roomTRUE 2.646e-02 .751e-03 3.414 0.000646 **x
## d_hospital -4.890e-05 .016e-06 -8.128 5.4b5e-16 ***
## d_bank -9.782e-05 .218e-05 -8.030 1.21e-15 *x*x*
## d_university -4.940e-05 .411e-06 -11.199 < 2e-16 **x*
## d_kindergarten 1.086e-04 .799e-05 6.039 1.66e-09 *x*xx*
## d_train -3.314e-05 .226e-06 -7.841 5.42e-15 **x*
## d_airport 1.272e-05 .846e-06 6.887 6.38e-12 *x*x*
## d_park 2.328e-04 .277e-05 7.102 1.40e-12 **x*

## d_stadium -2.923e-05
## d_disco -1.505e-05

.581e-06 -11.325 < 2e-16 **x*
.849e-06 -3.909 9.38e-05 ***

WNWFRE PP, PP, ONO0O NP, NRERPR W

'log'),
control,

FALSE)
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## d_cinema -2.333e-05 4.540e-06 -5.138 2.88e-07 **x*
## d_library 8.208e-05 8.267e-06 9.929 < 2e-16 ***
## d_historic 1.103e-05 2.903e-06  3.798 0.000147 *x**
## d_attraction -5.197e-05 4.705e-06 -11.047 < 2e-16 *x*x*
## “lisaHigh-Low" -1.404e-01 1.683e-02 -8.342 < 2e-16 *xx
## “lisalow-High~ -2.890e-01 1.283e-02 -22.524 < 2e-16 *xx
## “lisaLow-Low" -4.897e-01 1.309e-02 -37.411 < 2e-16 **x*
## "I(sq_mt_built™2)" -3.912e-06 2.097e-07 -18.658 < 2e-16 *xx
## “I(n_bathrooms™2)" -4.872e-03 1.643e-03 -2.965 0.003039 *x*
## ——-

## Signif. codes: 0 '*x*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Gamma family taken to be 0.05071781)

##

## Null deviance: 2831.99 on 5032 degrees of freedom

## Residual deviance: 245.93 on 5001 degrees of freedom
## AIC: 127617

##

## Number of Fisher Scoring iterations: 6

set.seed(123)
fit_glm_poisson=train(buy_price~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2), ## Poisson -> log

train_reg, 'glmStepAIC', poisson,
'both',k=log(nrow(train_reg)), control, FALSE)

summary (fit_glm_poisson)
##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q  Median 3Q Max
## -847.71 -92.53 -11.41 73.11 1571.89
##
## Coefficients:
#i# Estimate Std. Error z value Pr(>|zl)
## (Intercept) 1.234e+01 2.158e-04 57190.7 <2e-16 **x
## sq_mt_built 5.027e-03 8.543e-07 5884.4 <2e-16 **x*
## n_bathrooms 9.837e-02 6.928e-05 1420.0 <2e-16 **x*
## n_rooms 1.689e-02 3.371e-05 501.0 <2e-16 *x*
## energy_certificatelLow -4.460e-02 5.656e-05 -788.6 <2e-16 *x*x
## floor 1.135e-02 1.052e-05 1079.5  <2e-16 **x*
## house_type_idAttic 1.338e-01 8.012e-05 1669.7 <2e-16 **x
## house_type_idIndependent -2.323e-01 1.064e-04 -2183.0 <2e-16 *x*x*
## is_exteriorTRUE 3.979e-02 9.275e-05 429.0 <2e-16 **x*
## is_renewal_neededTRUE -9.553e-02 7.100e-05 -1345.4 <2e-16 *xx*
## is_new_developmentTRUE 1.929e-01 7.796e-05 2473.7 <2e-16 **x*
## has_acTRUE 4.598e-02 5.221e-05 880.6 <2e-16 **x*
## has_fitted_wardrobesTRUE -1.933e-02 5.700e-05 -339.1 <2e-16 **x*
## has_liftTRUE 2.148e-01 8.196e-05 2620.4 <2e-16 **x*
## has_balconyTRUE 6.445e-03 4.703e-05 137.0 <2e-16 **x*
## has_gardenTRUE 2.035e-02 5.922e-05 343.7 <2e-16 **x
## has_parkingTRUE 4.981e-02 5.676e-05 877.6  <2e-16 ***
## has_poolTRUE 6.205e-02 6.613e-05 938.3 <2e-16 **x
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## has_storage_roomTRUE 1.494e-02 4.913e-05 304.0
## has_individual_heatingTRUE 1.871e-02 5.677e-05 329.5
## d_supermarket 6.960e-05 1.093e-07 636.5
## d_hospital -4.430e-05 4.598e-08 -963.5
## d_pharmacy -3.699e-05 1.890e-07 -195.7
## d_post -2.770e-05 6.865e-08 -403.4
## d_bank -7.473e-05 1.003e-07 -744.9
## d_university -5.073e-05 3.561e-08 -1424.5
## d_school -3.960e-05 1.363e-07 -290.6
## d_kindergarten 2.112e-04 1.152e-07 1832.4
## d_train -4.343e-05 3.212e-08 -1352.2
## d_bus -5.464e-06 2.106e-08 -259.5
## d_airport 3.713e-06 1.249e-08 297.3
## d_gym -2.003e-05 5.813e-08 -344.5
## d_park 3.311e-04 1.963e-07 1686.7
## d_stadium -3.213e-05 2.195e-08 -1463.9
## d_disco -2.644e-05 2.656e-08 -995.4
## d_cinema -3.210e-05 3.087e-08 -1039.8
## d_library 9.222e-05 5.621e-08 1640.6
## d_historic 1.822e-05 2.186e-08 833.3
## d_attraction -5.272e-05 3.492e-08 -1509.7
## “lisaHigh-Low" -1.584e-01 9.720e-05 -1629.6
## “lisalow-High" -3.096e-01 8.754e-05 -3536.4
## “lisaLow-Low" -5.007e-01 8.945e-05 -5596.9
## "I(sq_mt_built™2)" -3.134e-06 9.166e-10 -3419.7
## “I(n_rooms™2)" 3.763e-04 1.631e-06 230.8
## ~I(n_bathrooms~™2)" -4.967e-03 7.003e-06 -709.3
## ——-

## Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 '
##

## (Dispersion parameter for poisson family taken to be 1)

##

#it Null deviance: 1427524899 on 5032 degrees of freedom
## Residual deviance: 126596723 on 4988 degrees of freedom
## AIC: 126670273

##

## Number of Fisher Scoring iterations: 4

fit_glm_poisson

## Generalized Linear Model with Stepwise Feature Selection
#i#

## 5033 samples

#i# 38 predictor

##

## No pre-processing

## Resampling: Cross-Validated (10 fold)
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<2e-16
<2e-16
<2e-16
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<2e-16
<2e-16
<2e-16
<2e-16
<2e-16

## Summary of sample sizes: 4530, 4529, 4530, 4530, 4529, 4531,

## Resampling results:

##

##  RMSE Rsquared MAE
##  172423.5 0.8487033 85709
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cv_log_gamma_error=function(data,k, 123)4{
set.seed(seed)
yourdata=data[sample (nrow(data)),]
fold=cut(seq(l,nrow(yourdata)), k, FALSE)
rmse_val=NULL
mae_val=NULL

r2_val=NULL
cc=trainControl('none', TRUE)
for(i in 1:k){

test_index=which(fold==i, TRUE)

test_data=yourdata[test_index,]
train_data=yourdatal[-test_index,]
model=train(log(buy_price)~.+I(sq_mt_built~2)+I(n_rooms~2)+I(n_bathrooms~2),

train_data, 'glmStepAIC', Gamma, 'both',
log(nrow(train_data)), cch FALSE)
pred=predict (model, test_datal,-1]1)

pred=exp (pred)
rmse_val[i]l=rmse(test_datal, 1] ,pred)
mae_val[i]=mae(test_datal,1],pred)
r2_val[il=cor(test_datal,1],pred) "2

}

rmse_mean=mean (rmse_val)

r2_mean=mean(r2_val)

mae_mean=mean(mae_val)

cv_error=as.data.frame(cbind(rmse_mean,r2_mean,mae_mean))

colnames(cv_error)=c('RMSE', 'Rsquared', 'MAE")

return(cv_error)

}

cv_log_gamma_error (train_reg,10)

## RMSE Rsquared MAE
## 1 188030.7 0.8136976 88222.95

par ( c(2,3))
plot(fit_glm$finalModel, 1:6)
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par( c(1,1))
obs_glm=predict (fit_glm, x_train)

c(rmse(obs_glm,y_train) ,mae(obs_glm,y_train))

## [1] 154540 86978

pred_glm=predict (fit_glm, x_test)
c(rmse(pred_glm,y_test) ,mae(pred_glm,y_test))

## [1] 155223.29 84706.39
obs_glm_gamma=predict (fit_glm_gamma, X_train)

obs_glm_gamma=exp (obs_glm_gamma)
c(rmse(obs_glm_gamma,y_train) ,mae(obs_glm_gamma,y_train))

## [1] Inf Inf
pred_glm_gamma=predict (fit_glm, X_test)

pred_glm=exp(pred_glm_gamma)
c(rmse(pred_glm_gamma,y_test) ,mae(pred_glm_gamma,y_test))

## [1] 155223.29 84706.39
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obs_glm_poisson=predict(fit_glm_poisson,newdata=x_train)
c(rmse(obs_glm_poisson,y_train) ,mae(obs_glm_poisson,y_train))

## [1] 160640.19 83376.35

pred_glm_poisson=predict(fit_glm_poisson,newdata=x_test)
c(rmse(pred_glm_poisson,y_test) ,mae(pred_glm_poisson,y_test))

## [1] 154233.23 81849.38

# Regolarizzazione (Rtidge, Lasso, ElasticlNet)
## Ridge

set.seed(123)

tune_ridge=expand.grid(alpha=0,lambda=c(0,10"seq(logl10(10000),10g10(0.1),length.out=300)))

#tune_ridge=expand.grid(alpha=0, lambda=c (0,10 seq(log10(50000),10910(0.1),length.out=300)))

fit_ridge=train(buy_price~.,data=train_reg,method='glmnet',tuneGrid=tune_ridge,trControl=control)

plot_ridge=ggplot(fit_ridge) + geom_point(color='#F8766D') + geom_line(color='#F8766D"') +
y1im(205800,210500) + theme_minimal() + labs(x=expression(lambda),y='RMSE')

plot_ridge
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#fit_ridge$bestTune
fit_ridge$results[which.min(fit_ridge$results$RMSE),]

##  alpha lambda RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
## 1 0 0 207348.1 0.7851804 112575.2 45347.47 0.03981968 7943.062
obs_ridge=predict(fit_ridge, x_train)

c(rmse(y_train,obs_ridge) ,mae(y_train,obs_ridge))

## [1] 208140.9 111354.2

pred_ridge=predict(fit_ridge, x_test)
c(rmse(y_test,pred_ridge) ,mae(y_test,pred_ridge))

## [1] 183072.7 108046.0

## Lasso

set.seed(123)

tune_lasso=expand.grid( 1, c(0,107seq(1log10(10000) ,10g10(0.1), 300)))
fit_lasso=train(buy_price~., train_reg, 'glmnet’', tune_lasso, control)
plot_lasso=ggplot(fit_lasso) + geom_point( '#F8766D') + geom_line( '#F8766D') +

y1lim(205800,210500) + theme _minimal() + labs(x=expression(lambda),y='RMSE")
plot_lasso
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fit_lasso$results[which.min(fit_lasso$results$RMSE), ]

##
## 242

alpha lambda RMSE Rsquared MAE RMSESD RsquaredSD MAESD
1 1031.283 206192.6 0.7877747 113463.6 41804.5 0.0363941 8080.349

coef (fit_lasso$finalModel,fit_lasso$bestTune$lambda)

## 42 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) 1.205040e+05
## sq_mt_built 3.282558e+03
## n_bathrooms 6.647855e+04
## n_rooms .

## energy_certificatelLow -3.306635e+04
## floor 5.544308e+03
## house_type_idAttic 1.164952e+05
## house_type_idIndependent —-2.245795e+05
## is_exteriorTRUE .

## is_renewal_neededTRUE -3.422818e+04
## is_new_developmentTRUE 9.886891e+04
## has_acTRUE 1.072991e+04
## has_fitted_wardrobesTRUE -1.322061e+04
## has_liftTRUE .

## has_balconyTRUE -5.387472e+03
## has_gardenTRUE .

## has_parkingTRUE 1.567042e+04
## has_poolTRUE 2.931537e+04
## has_storage_roomTRUE 7.475514e+02
## has_individual_heatingTRUE 2.370838e+04
## d_supermarket 4.192907e+01
## d_hospital -1.468600e+01
## d_pharmacy -6.375466e+01
## d_post -1.318164e+01
## d_bank -4.619588e+01
## d_university -2.158565e+01
## d_school -4.916368e+01
## d_kindergarten 1.540051e+02
## d_train -7.477438e+00
## d_bus -8.168432e+00
## d_airport 3.602992e+00
## d_gym .

## d_park 2.275924e+02
## d_stadium -1.118545e+01
## d_disco -6.487132e+00
## d_cinema -1.786537e+01
## d_library 3.094211e+01
## d_historic -1.428683e+00
## d_attraction -1.248754e+01
## lisaHigh-Low -1.569210e+05
## lisalow-High -1.209663e+05

#Hit

lisaLow-Low

.696735e+05
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obs_lasso=predict(fit_lasso,newdata=x_train)
c(rmse(y_train,obs_lasso) ,mae(y_train,obs_lasso))

## [1] 205819.2 112077.4

pred_lasso=predict(fit_lasso,newdata=x_test)
c(rmse(y_test,pred_lasso) ,mae(y_test,pred_lasso))

## [1] 182830.7 108314.5
## ElasticNet

set.seed(123)
tune_elnet=expand.grid(alpha=seq(0,1,by=0.1),lambda=c(0,10"seq(logl10(10000),10g10(0.1),length.out=300))
fit_elnet=train(buy_price~.,data=train_reg,method='glmnet',tuneGrid=tune_elnet,trControl=control)
plot_elnet=ggplot(fit_elnet) + ylim(205800,210500) + theme_minimal() + labs(x=expression(lambda),y='RMS

scale_color_discrete(name=expression(alpha)) + scale_shape_discrete(name=expression(alpha))
plot_elnet
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fit_elnet$results[which.min(fit_elnet$results$RMSE),]

## alpha lambda RMSE Rsquared MAE  RMSESD RsquaredSD  MAESD
## 593 0.1 7071.285 206110.6 0.7877472 113263.5 42632.52 0.0371397 8067.05



coef (fit_elnet$finalModel,fit_elnet$bestTune$lambda)

## 42 x 1 sparse Matrix of class "dgCMatrix"
## sl
## (Intercept) 1.195005e+05
## sq_mt_built 3.126918e+03
## n_bathrooms 7.127770e+04
## n_rooms 2.377634e+03
## energy_certificatelLow -3.355637e+04
## floor 5.533643e+03
## house_type_idAttic 1.188371e+05
## house_type_idIndependent -2.034214e+05
## is_exteriorTRUE .

## is_renewal_neededTRUE -3.384917e+04
## is_new_developmentTRUE 9.735734e+04
## has_acTRUE 1.126492e+04
## has_fitted_wardrobesTRUE -1.445115e+04
## has_liftTRUE 5.561355e+02
## has_balconyTRUE -4.960684e+03
## has_gardenTRUE 1.159656e+02
## has_parkingTRUE 1.693653e+04
## has_poolTRUE 3.235810e+04
## has_storage_roomTRUE 2.412862e+03
## has_individual_heatingTRUE 2.253978e+04
## d_supermarket 4.327984e+01
## d_hospital -1.664401e+01
## d_pharmacy -6.339132e+01
## d_post -1.318377e+01
## d_bank -4.690102e+01
## d_university -2.206577e+01
## d_school -4.974161e+01
## d_kindergarten 1.550361e+02
## d_train -7.780459e+00
## d_bus -8.488299e+00
## d_airport 4.037425e+00
## d_gym .

## d_park 2.317813e+02
## d_stadium -1.142166e+01
## d_disco -6.323801e+00
## d_cinema -1.756156e+01
## d_library 3.261735e+01
## d_historic -1.459673e+00
## d_attraction -1.324225e+01
## lisaHigh-Low -1.547282e+05
## lisalow-High -1.209102e+05
## lisalow-Low -1.663796e+05
obs_elnet=predict(fit_elnet, x_train)

c(rmse(y_train,obs_elnet) ,mae(y_train,obs_elnet))

## [1] 205940.6 111880.3
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pred_elnet=predict(fit_elnet,x_test)
c(rmse(y_test,pred_elnet) ,mae(y_test,pred_elnet))

## [1] 182403.0 108199.9

#reg_plot=ggarrange(ggarrange(plot_ridge,plot_lasso,ncol=2, labels=c('Ridge’, 'Lasso')),
# plot_elnet, labels='ElasticNet',vjust=27,nrow=2)
#annotate_figure(reg_plot)

# Regresstione Non—Parametrica

## K-nearest neighbors (KNN)

set.seed(123)
fit_knn=train(buy_price~.,data=train_reg,preProcess=c('center','scale') ,method='knn',

tuneGrid=expand.grid(k=c(1,seq(2,50,4))),trControl=control)
ggplot(fit_knn) + theme minimal() + labs(x='k',y='RMSE')
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fit_knn$results[which.min(fit_knn$results$RMSE),]

# ok RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
## 3 6 200388.9 0.8078803 90492.86 40940.98 0.03459265 4166.386



203

obs_knn=predict (fit_knn,newdata=x_train)
c(rmse(y_train,obs_knn) ,mae(y_train,obs_knn))

## [1] 165629.16 74384.41

pred_knn=predict (fit_knn,newdata=x_test)
c(rmse(y_test,pred_knn) ,mae(y_test,pred_knn))

## [1] 177983.17 90260.29
## Multivariate Adaptive Regression Spline (MARS)

set.seed(123)
fit_mars=train(buy_price~.,data=train_reg,method='earth',
tuneGrid=expand.grid(degree=1:3,nprune=seq(2,50,by=4)) ,trControl=control)
ggplot(fit_mars) + theme_minimal() + labs(x='k',y='RMSE') +
scale_color_discrete(name='Grado') + scale_shape_discrete(name='Grado')
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fit_mars$results[which.min(fit_mars$results$RMSE),]

## degree nprune RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
#H 21 2 30 194750.6 0.8111468 98120.46 37704.02 0.04162673 7001.987



204

obs_mars=predict(fit_mars, x_train)
c(rmse(y_train,obs_mars) ,mae(y_train,obs_mars))

## [1] 151783.22 86081.75

pred_mars=predict(fit_mars, X_test)
c(rmse(y_test,pred_mars) ,mae(y_test,pred_mars))

## [1] 156169.67 88701.33

# Modell? basati suglt Alberd

## Albero Decisionale

set.seed(123)

tune_tree=expand.grid( 1:20)

fit_tree=train(buy_price-~., train_reg, 'rpart2’', tune_tree, control)
ggplot(fit_tree) + theme_minimal() + labs(x="Profondita' Massima'",y='RMSE')
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fit_tree$results[which.min(fit_tree$results$RMSE),]

it maxdepth RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
## 10 10 243439.1 0.7024124 129806.3 39838.93 0.04491422 5981.967
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obs_tree=predict(fit_tree,newdata=x_train)
c(rmse(y_train,obs_tree) ,mae(y_train,obs_tree))

## [1] 218283.4 124474.8

pred_tree=predict(fit_tree,newdata=x_test)
c(rmse(y_test,pred_tree) ,mae(y_test,pred_tree))

## [1] 220336.1 127196.0

## Random Forest

set.seed(123)
fit_rf_split=train(buy_price~.,data=train_reg,method='ranger',importance='impurity',
num.trees=50, tunelength=10,trControl=control)
ggplot(fit_rf_split) + theme_minimal() + labs(x='Variabili Selezionate',y='RMSE') +
scale_color_discrete(name='Regola di Split',labels=c('Varianza','Extra Tree')) +
scale_shape_discrete(name='Regola di Split',labels=c('Varianza','Extra Tree'))
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fit_rf_split$results[which.min(fit_rf_split$results$RMSE),]

## mtry min.node.size splitrule RMSE Rsquared MAE  RMSESD RsquaredSD
# 7 15 5 variance 160860.4 0.8721192 70700.93 44285.59 0.0360551
#it MAESD

## 7 5155.132
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tune_rf=expand.grid( 15,
fit_rf_n25=train(buy_price-~.,
25N
fit_rf_nb0=train(buy_price-~.,
50,
fit_rf_n100=train(buy_price-~.,
100,
fit_rf _ni150=train(buy_price-~.,
150,
fit_rf_n200=train(buy_price-~.,
200,
fit_rf_n500=train(buy_price-~.,
500,

'variance',
train_reg,
tune_rf,
train_reg,
tune_rf,
train_reg,
tune_rf,
train_reg,
tune_rf,
train_reg,
tune_rf,
train_reg,
tune_rf,

5)
'ranger',
control)
'ranger',
control)
'ranger',
control)
'ranger',
control)
'ranger',
control)
'ranger',
control)

fit_rf_n25%results[which.min(fit_rf_n25$results$RMSE),]

## mtry splitrule min.node.size
## 1 15 wvariance
## MAESD
## 1 5203.423

RMSE Rsquared

MAE

fit_rf_n50$results[which.min(fit_rf_n50$results$RMSE),]

## mtry splitrule min.node.size

## 1 15 variance
it MAESD
## 1 4866.74

RMSE Rsquared

MAE

fit_rf_n100$results[which.min(fit_rf n100$results$RMSE),]

## mtry splitrule min.node.size
## 1 15 variance
## MAESD
## 1 5775.854

RMSE Rsquared

MAE

fit_rf_n150$results[which.min(fit_rf n150$results$RMSE),]

## mtry splitrule min.node.size

## 1 15 variance
## MAESD
## 1 8168.97

RMSE Rsquared

MAE

fit_rf_n200$results[which.min(fit_rf n200$results$RMSE),]

## mtry splitrule min.node.size
## 1 15 variance
## MAESD
## 1 2649.401

RMSE Rsquared

MAE

"impurity’',
"impurity’',
'impurity’
'impurity’
'impurity'’

'impurity'’

RMSESD RsquaredSD
5 164486.7 0.8647952 71518.04 45820.89 0.04640623

RMSESD RsquaredSD
5 161119 0.8734158 71159.73 40986.86 0.03136113

RMSESD RsquaredSD
5 164551.9 0.8643183 70798.22 41322.66 0.04438159

RMSESD RsquaredSD
5 160430 0.8760274 70364.54 52502.72 0.0305007

RMSESD RsquaredSD
5 161557.8 0.8699279 69782.77 40863.41 0.04530318

>

>

>

>
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fit_rf_n500$results[which.min(fit_rf_n500$results$RMSE),]

## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
## 1 15 variance 5 163927.4 0.8683842 70071.99 36506.62 0.03898208
#i# MAESD

## 1 3761.338

set.seed(123)
tune_rf=expand.grid(ntry=seq(5,40,5) ,splitrule='variance',min.node.size=seq(2,17,3))
fit_rf=train(buy_price~.,data=train_reg,method='ranger',importance='impurity"',
num.trees=150,tuneGrid=tune_rf,trControl=control)
ggplot(fit_rf) + theme_minimal() + labs(x='Variabili Selezionate',y='RMSE') +
scale_color_discrete(name='Nodo Minimo') + scale_shape_discrete(name='Nodo Minimo')
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fit_rf$results[which.min(fit_rf$results$RMSE),]
## mtry splitrule min.node.size RMSE Rsquared MAE  RMSESD RsquaredSD
## 26 25 variance 5 160809.6 0.8720488 70682.79 42636.75 0.03478304

## MAESD
## 26 6360.411

obs_rf=predict(fit_rf,newdata=x_train)
c(rmse(y_train,obs_rf) ,mae(y_train,obs_rf))
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## [1] 68387.77 28319.37

pred_rf=predict(fit_rf,newdata=x_test)
c(rmse(y_test,pred_rf) ,mae(y_test,pred_rf))

## [1] 132151.6 64077.1
## XG-Boost

set.seed(123)
tune_xgbl=expand.grid(nrounds=seq(50,1000,50) ,max_depth=2:6,eta=c(0.025,0.05,0.1,0.3) ,gamma=0,
min_child_weight=1,subsample=1,colsample_bytree=1)
fit_xgbl=train(buy_price~.,data=train_reg,method='xgbTree',tuneGrid=tune_xgbl,trControl=control)
ggplot(fit_xgbl) + theme_bw() + labs(x='Iterazioni',y='RMSE') +
scale_color_discrete(name="Profondita' Massima") + scale_shape_discrete(name="Profondita' Massima")
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fit_xgbl$results[which.min(fit_xgbl$results$RMSE),]

## eta max_depth gamma colsample_bytree min_child_weight subsample nrounds
## 260 0.1 4 0 1 1 1 1000
## RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

## 260 147844.8 0.8912704 65020.97 33390.83 0.02786055 4810.507
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set.seed(123)
tune_xgb2=expand.grid(nrounds=seq(50,1000,50) ,max_depth=4,eta=0.1,gamma=0,
min_child_weight=1:5,subsample=1,colsample_bytree=1)
fit_xgb2=train(buy_price~.,data=train_reg,method="'xgbTree',tuneGrid=tune_xgb2,trControl=control)
ggplot(fit_xgb2) + theme_minimal() + labs(x='Iterazioni',y='RMSE') +
scale_color_discrete(name='Peso Nodo Figlio') + scale_shape_discrete(name='Peso Nodo Figlio')
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fit_xgb2$results[which.min(fit_xgb2$results$RMSE),]

#i# eta max_depth gamma colsample_bytree min_child_weight subsample nrounds
## 40 0.1 4 0 1 2 1 1000
## RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

## 40 145046.9 0.8952544 64472.44 34468.85 0.02973147 5829.137

set.seed(123)
tune_xgb3=expand.grid(nrounds=seq(50,1000,50) ,max_depth=4,eta=0.1,gamma=0,
min_child_weight=2,subsample=c(0.5,0.75,1),colsample_bytree=c(0.4,0.6,0.8,1))
fit_xgb3=train(buy_price~.,data=train_reg,method='xgbTree',tuneGrid=tune_xgb3,trControl=control)
ggplot(fit_xgb3) + theme_bw() + labs(x='Iterazioni',y='RMSE') +
scale_color_discrete(name='Percentuale di Variabili') +
scale_shape_discrete(name='Percentuale di Variabili')
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fit_xgb3$results[which.min(fit_xgb3$results$RMSE),]
## eta max_depth gamma colsample_bytree min_child_weight subsample nrounds
## 240 0.1 4 0 1 2 1 1000

## RMSE Rsquared MAE  RMSESD RsquaredSD MAESD
## 240 145046.9 0.8952544 64472.44 34468.85 0.02973147 5829.137

set.seed(123)

tune_xgb4=expand.grid(nrounds=seq(50,1000,50) ,max_depth=4,eta=0.1,gamma=c(0,1,10000),
min_child_weight=2, subsample=1,colsample_bytree=1)

fit_xgb4=train(buy_price~.,data=train_reg,method="'xgbTree',tuneGrid=tune_xgb4,trControl=control)

fit_xgb4$results[which.min(fit_xgb4$results$RMSE),]

#i#t eta max_depth gamma colsample_bytree min_child_weight subsample nrounds
## 20 0.1 4 0 1 2 1 1000
## RMSE Rsquared MAE  RMSESD RsquaredSD MAESD

## 20 145046.9 0.8952544 64472.44 34468.85 0.02973147 5829.137

ggplot(fit_xgb4) + theme_minimal() + labs(x='Iterazioni',y='RMSE') +
scale_color_discrete(name='Gamma') + scale_shape_discrete(name='Gamma')



211

160000
155000
Gamma
ngJ —0— 0
o —e— 1
—-=— 10000
150000
145000
250 500 750 1000
Iterazioni

set.seed(123)
tune_xgbb=expand.grid(nrounds=seq(500,10000,100) ,max_depth=4,eta=c(0.01,0.025,0.05,0.075,0.1) ,gamma=0,
min_child_weight=2,subsample=1,colsample_bytree=1)
fit_xgbb=train(buy_price~.,data=train_reg,method='xgbTree',tuneGrid=tune_xgbb,trControl=control)
ggplot(fit_xgb5) + theme_minimal() + labs(x='Iterazioni',y='RMSE') +
scale_color_discrete(name='Learning Rate') + scale_shape_discrete(name='Learning Rate')
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fit_xgbb$results[which.min(fit_xgb5$results$RMSE),]
## eta max_depth gamma colsample_bytree min_child_weight subsample nrounds
## 328 0.075 4 0 1 2 1 4400
## RMSE Rsquared MAE RMSESD RsquaredSD MAESD

## 328 142481.5 0.8989825 63477.85 32346.8 0.02672123 4964.076

obs_xgb=predict (fit_xgbb,newdata=x_train)
c(rmse(y_train,obs_xgb) ,mae(y_train,obs_xgb))

## [1] 7367.810 4729.638

pred_xgb=predict (fit_xgbb,newdata=x_test)
c(rmse(y_test,pred_xgb) ,mae(y_test,pred_xgb))

## [1] 122237.11 58936.02
# Modello Spaziale

k_neigh_75=knn2nb(knearneigh(train_coord,k=75,longlat=TRUE))
k_distance_75=nbdists(k_neigh_75,train_coord, longlat=TRUE)
inv_k_distance_75=lapply(k_distance_75, function(x) (1/(x+0.001)))
k_weight_75=nb2listw(k_neigh_75,glist=inv_k_distance_75,style='W")
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set.seed(123)

moran.mc (fit_lm$finalModel$residuals,k_weight_75, 100, 'two.sided')
#it

## Monte-Carlo simulation of Moran I

#it

## data: fit_Im$finalModel$residuals

## weights: k_weight_75

## number of simulations + 1: 101

#it

## statistic = 0.42235, observed rank = 101, p-value < 2.2e-16

##

alternative hypothesis: two.sided

#lm.morantest (fit_lm$finalModel ,k_weight_75,alternative="two.sided’',resfun=residuals)

1m.

#i#
#Hit
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#i#t
##
#it
##
#it
##
#i#t
##
#i#t
#i#
#Hi#t

1m.

##
#i#t
##
#i#t
##
#i#t
##
#i#t

LMtests(fit_lm$finalModel,k_weight_75, c('LMlag', 'LMerr'))

Lagrange multiplier diagnostics for spatial dependence

data:

model: Ilm(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +
house_type_idAttic + house_type_idIndependent + is_exteriorTRUE +
is_new_developmentTRUE + has_acTRUE + has_1liftTRUE + has_gardenTRUE +
has_individual_heatingTRUE, data = dat)

weights: k_weight_75

LMlag = 2112.4, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:

model: lm(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +
house_type_idAttic + house_type_idIndependent + is_exteriorTRUE +
is_new_developmentTRUE + has_acTRUE + has_1liftTRUE + has_gardenTRUE +
has_individual_heatingTRUE, data = dat)

weights: k_weight_75

LMerr = 2871, df = 1, p-value < 2.2e-16

LMtests(fit_lm$finalModel,k_weight_75, c('RLMlag', 'RLMerr'))

Lagrange multiplier diagnostics for spatial dependence

data:

model: Ilm(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +
house_type_idAttic + house_type_idIndependent + is_exteriorTRUE +
is_new_developmentTRUE + has_acTRUE + has_1liftTRUE + has_gardenTRUE +
has_individual_heatingTRUE, data = dat)
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## weights: k_weight_75

##

## RLMlag = 262.54, df = 1, p-value < 2.2e-16

##

#i#

## Lagrange multiplier diagnostics for spatial dependence

#i#

## data:

## model: lm(formula = .outcome ~ sq_mt_built + n_bathrooms + n_rooms +
## house_type_idAttic + house_type_idIndependent + is_exteriorTRUE +

## is_new_developmentTRUE + has_acTRUE + has_liftTRUE + has_gardenTRUE +
## has_individual_heatingTRUE, data = dat)

## weights: k_weight_75

##

## RLMerr = 1021.1, df = 1, p-value < 2.2e-16

## Modello di Errore Spaziale (SEM)

fit_err=errorsarlm(buy_price~sq_mt_built+n_bathrooms+n_rooms+house_type_id+is_exterior+
is_new_development+has_ac+has_lift+has_garden+has_individual_heating,

train, k_weight_75, 'MC', 1e-30)
moran.mc (fit_err$residuals,k_weight_75, 100, 'two.sided')
i
## Monte-Carlo simulation of Moran I
i

## data: fit_err$residuals

## weights: k_weight_75

## number of simulations + 1: 101

#it

## statistic = -0.0066871, observed rank = 17, p-value = 0.3366
## alternative hypothesis: two.sided

summary(fit_err)

#i

## Call:errorsarlm(formula = buy_price ~ sq_mt_built + n_bathrooms +

#it n_rooms + house_type_id + is_exterior + is_new_development +

## has_ac + has_lift + has_garden + has_individual_heating,

## data = train, listw = k_weight_75, method = "MC", tol.solve = 1e-30)
#it

## Residuals:

## Min 1Q Median 3Q Max

## -1322783.5 -63949.1 -6091.6 44166.1 4775112.7

#it

## Type: error
## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|zl)
## (Intercept) -137000.839  17423.695 -7.8629 3.775e-15
## sq_mt_built 3082.982 67.901 45.4040 < 2.2e-16
## n_bathrooms 70110.614 5198.703 13.4862 < 2.2e-16

## n_rooms 13075.771 3098.484 4.2201 2.442e-05
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## house_type_idAttic 120566.823  10536.107 11.4432 < 2.2e-16
## house_type_idIndependent  -143710.836  19392.205 -7.4108 1.257e-13
## is_exteriorTRUE 13594.701 9957.061 1.3653 0.1721485
## is_new_developmentTRUE 137328.310  13239.326 10.3728 < 2.2e-16
## has_acTRUE 22934.658 6122.293 3.7461 0.0001796
## has_liftTRUE 22680.855 8256.705 2.7470 0.0060150
## has_gardenTRUE 4272.675 7677.514 0.5565 0.5778568
## has_individual_heatingTRUE  16144.476 7525.405 2.1453 0.0319265
##

## Lambda: 0.73698, LR test value: 2228.7, p-value: < 2.22e-16
## Approximate (numerical Hessian) standard error: 0.010657

## z-value: 69.152, p-value: < 2.22e-16
## Wald statistic: 4782, p-value: < 2.22e-16
##

## Log likelihood: -68422.68 for error model

## ML residual variance (sigma squared): 3.3327e+10, (sigma: 182560)
## Number of observations: 5033

## Number of parameters estimated: 14

## AIC: 136870, (AIC for 1m: 139100)

### Diagnostiche

y=fit_err$y
X=fit_err$X

fitted=X %*% fit_err$coefficients

residuals=y-fitted

H=X %*% solve(t(X) %*% X) %*% t(X)
variance=sum(residuals~2)/(nrow(X)-ncol (X))
stdres=sqrt(abs(residuals/sqrt(variancex*(1-diag(H)))))

par( c(1,3))

plot(fit_err$fitted.values,fit_err$residuals, 'Residuals’, 'Fitted values',
'Residuals vs Fitted')

qgnorm(fit_err$residuals, 'Standardized residuals')

qqline(fit_err$residuals, 'red')

plot(fit_err$fitted.values,stdres, 'Fitted values', 'sqrt (Standardized residuals)',

'Scale - Location')
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Residuals vs Fitted

Normal Q-Q Plot

Scale — Location
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### Errore Previsivo Spaziale

cv_error_sem=function(data,k,coord,v,

123){

set.seed(seed)

yourdata=data[sample (nrow(data)),]

fold=cut(seq(l,nrow(yourdata)), k,

rmse_val=NULL

mae_val=NULL

r2_val=NULL

for(i in 1:k){
test_index=which(fold==i,
test_data=yourdata[test_index,]
train_data=yourdata[-test_index,]
te_coord=coord[test_index,]
tr_coord=coord[-test_index,]

FALSE)

TRUE)

k_neigh_75=knn2nb(knearneigh(tr_coord,k=v, TRUE))
k_distance_75=nbdists(k_neigh_75,tr_coord, TRUE)
inv_k_distance_75=lapply(k_distance_75, function(x) (1/(x+0.001)))
k_weight_75=nb2listw(k_neigh_75, inv_k_distance_75, W)

model=errorsarlm(buy_price~sq_mt_built+n_bathrooms+n_rooms+house_type_id+
is_exterior+is_new_development+has_ac+has_lift+has_garden+
has_individual_heating, train_data,

k_weight_75, "MC", 1e-30)
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cc=as.data.frame(rbind(tr_coord,te_coord))

k_neigh_75_test=knn2nb(knearneigh(cc,k=v, TRUE) )
k_distance_75_test=nbdists(k_neigh_75_test,cc, TRUE)
inv_k_distance_75_t=lapply(k_distance_75_test, function(x) (1/(x+0.001)))
k_weight_75_test=nb2listw(k_neigh_ 75_test, inv_k_distance_75_t,

pred=predict (model, test_datal,-1], k_weight_75_test,

rmse_val[il=rmse(test_datal,1],pred)
r2_val[i]=cor(test_datal,1],pred) 2
mae_val[il=mae(test_datal,1],pred)
}
rmse_mean=mean (rmse_val)
r2_mean=mean(r2_val)
mae_mean=mean(mae_val)
cv_error=as.data.frame(cbind(rmse_mean,r2_mean,mae_mean))
colnames(cv_error)=c('RMSE', 'Rsquared', 'MAE')
return(cv_error)

cv_error_sem(train,10,train_coord,75) # errore di cross-wvalidation

#i#t RMSE Rsquared MAE
## 1 242303.4 0.7007407 143713.9

rmse(y_train,fit_err$fitted.values)

## [1] 182558.1

mae(y_train,fit_err$fitted.values)

## [1] 90825.75
cc=as.data.frame(rbind(train_coord,test_coord))

k_neigh_75_test=knn2nb(knearneigh(cc,k=75, TRUE) )
k_distance_75_test=nbdists(k_neigh_75_test,cc, TRUE)
inv_k_distance_75_t=lapply(k_distance_75_test, function(x) (1/(x+0.001)))
k_weight_75_test=nb2listw(k_neigh 75_test, inv_k_distance_75_t, "W')

IWI)

'trend')

pred_err=predict(fit_err, X_test, k_weight_75_test, 'trend')

rmse(y_test,pred_err)

## [1] 232233.9

mae (y_test,pred_err)

## [1] 147464.5
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